Abstract. The EURODELTA III exercise has facilitated a comprehensive intercomparison and evaluation of chemistry transport model performances. Participating models performed calculations for four 1-month periods in different seasons in the years 2006 to 2009, allowing the influence of different meteorological conditions on model performances to be evaluated. The exercise was performed with strict requirements for the input data, with few exceptions. As a consequence, most of differences in the outputs will be attributed to the differences in model formulations of chemical and physical processes. The models were evaluated mainly for background rural stations in Europe. The performance was assessed in terms of bias, root mean square error and correlation with respect to the concentrations of air pollutants (NO2, O3, SO2, PM10 and PM2.5), as well as key meteorological variables. Though most of meteorological parameters were prescribed, some variables like the planetary boundary layer (PBL) height and the vertical diffusion coefficient were derived in the model preprocessors and can partly explain the spread in model results. In general, the daytime PBL height is underestimated by all models. The largest variability of predicted PBL is observed over the ocean and seas. For ozone, this study shows the importance of proper boundary conditions for accurate model calculations and then on the regime of the gas and particle chemistry. The models show similar and quite good performance for nitrogen dioxide, whereas they struggle to accurately reproduce measured sulfur dioxide concentrations (for which the agreement with observations is the poorest). In general, the models provide a close-to-observations map of particulate matter (PM2.5 and PM10) concentrations over Europe rather with correlations in the range 0.4–0.7 and a systematic underestimation reaching −10 µg m−3 for PM10. The highest concentrations are much more underestimated, particularly in wintertime. Further evaluation of the mean diurnal cycles of PM reveals a general model tendency to overestimate the effect of the PBL height rise on PM levels in the morning, while the intensity of afternoon chemistry leads formation of secondary species to be underestimated. This results in larger modelled PM diurnal variations than the observations for all seasons. The models tend to be too sensitive to the daily variation of the PBL. All in all, in most cases model performances are more influenced by the model setup than the season. The good representation of temporal evolution of wind speed is the most responsible for models' skillfulness in reproducing the daily variability of pollutant concentrations (e.g. the development of peak episodes), while the reconstruction of the PBL diurnal cycle seems to play a larger role in driving the corresponding pollutant diurnal cycle and hence determines the presence of systematic positive and negative biases detectable on daily basis.
Abstract. Meteorological and sea temperature data from the ODAS Italia 1 buoy (Ligurian Sea, Western Mediterranean) are used to study the anomalous warming of summer 2003 at sea. The event was related to the record heat wave that interested much of Europe from June to September of that year. The data show that the anomalous warming was prevalently confined to within a few meters below the sea surface. On the contrary, the temperatures in the underlying layers were lower than usual. The limited vertical propagation of heat is ascribed to the high temperature difference that arose between the surface and the deeper layers due to protracted calm weather conditions. The degree of penetration of heat deduced from the observations is consistent with that computed on the basis of an energetic argument, wherein the wind constitutes the sole supply of kinetic energy, while the heating is viewed as the source of potential energy that must be "subtracted" by mixing. The results support the hypothesis that the scanty energy from the wind is mainly responsible for the development of the temperature anomaly at the sea surface.
Abstract.The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality.The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTATrends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions.The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emisPublished by Copernicus Publications on behalf of the European Geosciences Union. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have -to date -completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community.The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990-2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.
Abstract. The wet deposition of nitrogen and sulfur in Europe for the period 1990–2010 was estimated by six atmospheric chemistry transport models (CHIMERE, CMAQ, EMEP MSC-W, LOTOS-EUROS, MATCH and MINNI) within the framework of the EURODELTA-Trends model intercomparison. The simulated wet deposition and its trends for two 11-year periods (1990–2000 and 2000–2010) were evaluated using data from observations from the EMEP European monitoring network. For annual wet deposition of oxidised nitrogen (WNOx), model bias was within 30 % of the average of the observations for most models. There was a tendency for most models to underestimate annual wet deposition of reduced nitrogen (WNHx), although the model bias was within 40 % of the average of the observations. Model bias for WNHx was inversely correlated with model bias for atmospheric concentrations of NH3+NH4+, suggesting that an underestimation of wet deposition partially contributed to an overestimation of atmospheric concentrations. Model bias was also within about 40 % of the average of the observations for the annual wet deposition of sulfur (WSOx) for most models. Decreasing trends in WNOx were observed at most sites for both 11-year periods, with larger trends, on average, for the second period. The models also estimated predominantly decreasing trends at the monitoring sites and all but one of the models estimated larger trends, on average, for the second period. Decreasing trends were also observed at most sites for WNHx, although larger trends, on average, were observed for the first period. This pattern was not reproduced by the models, which estimated smaller decreasing trends, on average, than those observed or even small increasing trends. The largest observed trends were for WSOx, with decreasing trends at more than 80 % of the sites. On average, the observed trends were larger for the first period. All models were able to reproduce this pattern, although some models underestimated the trends (by up to a factor of 4) and others overestimated them (by up to 40 %), on average. These biases in modelled trends were directly related to the tendency of the models to under- or overestimate annual wet deposition and were smaller for the relative trends (expressed as % yr−1 relative to the deposition at the start of the period). The fact that model biases were fairly constant throughout the time series makes it possible to improve the predictions of wet deposition for future scenarios by adjusting the model estimates using a bias correction calculated from past observations. An analysis of the contributions of various factors to the modelled trends suggests that the predominantly decreasing trends in wet deposition are mostly due to reductions in emissions of the precursors NOx, NH3 and SOx. However, changes in meteorology (e.g. precipitation) and other (non-linear) interactions partially offset the decreasing trends due to emission reductions during the first period but not the second. This suggests that the emission reduction measures had a relatively larger effect on wet deposition during the second period, at least for the sites with observations.
The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives.This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition.This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined.Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.