A rather complete mathematical model for a common-rail injection-system dynamics numerical simulation was developed to support experimentation, layout, and control design, as well as performance optimization. The thermofluid dynamics of the hydraulic-system components, including rail, connecting pipes, and injectors was modeled in conjunction with the solenoid-circuit electromagnetics and the mechanics of mobile elements. One-dimensional flow equations in conservation form were used to simulate wave propagation phenomena throughout the high-pressure connecting pipes, including the feeding pipe of the injector nozzle. In order to simulate the temperature variations due to the fuel compressibility, the energy equation was used in addition to mass conservation and momentum balance equations. Besides, the possible cavitation phenomenon effects on the mass flow rate through the injector bleed orifice and the nozzle holes were taken into account. A simple model of the electromagnetic driving circuit was used to predict the temporal distribution of the force acting on the pilot-valve anchor. It was based on the experimental time histories of the current through the solenoid and of the associated voltage that is provided by the electronic control unit to the solenoid. The numerical code was validated through the comparison of the prediction results with experimental data, that is, pressure, injected flow rate, and needle lift time histories, taken on a high performance test bench Moehwald-Bosch MEP2000-CA4000. The novel injection-system mathematical model was applied to the analysis of transient flows through the hydraulic circuit of a commercial multijet second-generation common-rail system, paying specific attention to the wave propagation phenomena, to their dependence on solenoid energizing time and rail pressure, as well as to their effects on system performance. In particular, an insight was also given into the model capability of accurately predicting the wave dynamics effects on the rate and mass of fuel injected when the dwell time between two consecutive injections is varied.
An experimental-theoretical study has been carried out on high-pressure volumetric radial-piston pumps for diesel fuel injection systems. The dependence of the pump inducted flow rate on speed and load was investigated and the characteristic curve of the pump cooling-lubrication circuit was derived. The head-capacity curves were determined for different types of pumps at different revolution speeds and compared with the injector flow requirements in order to evaluate the pressure-control strategy efficiency. An insight into the ageing effects on the pump performance was also provided. Furthermore, the dynamic pump behavior was investigated, with specific reference to the flow-rate ripple at the delivery port. A general analytical expression has been derived for the volumetric efficiency. Furthermore, a specific procedure has been developed and applied to the experimental evaluation of the fuel leakages in pressure control valve (PCV) integrated pumps. Finally, the mechanical-hydraulic efficiency of the pump has experimentally been assessed as a function of head and speed in order to obtain a reliable evaluation of the pump shaft power and torque at different working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.