The effects of a grain-based subacute ruminal acidosis (SARA) challenge (GBSC) and an alfalfa-pellet SARA challenge (APSC) on fermentation and endotoxins in the rumen and in the cecum, as well as on endotoxins in peripheral blood, were determined. Six nonlactating Holstein cows with cannulas in the rumen and cecum were used in the study. A 3×3 Latin square arrangement of treatments with 4-wk experimental periods was adopted. During the first 3 wk of each experimental period, all cows received a diet containing 70% forages [dry matter (DM) basis]. In wk 4 of each period, cows received 1 of the following 3 diets: the 70% forage diet fed during wk 1 to 3 (control), a diet in which 34% of the dietary DM was replaced with grain pellets made of 50% ground wheat and 50% ground barely (GBSC), or a diet in which 37% of dietary DM was replaced with pellets of ground alfalfa (APSC). Rumen pH was monitored continuously using indwelling pH probes, and rumen fluid, blood, cecal digesta, and fecal grab samples were collected immediately before feed delivery at 0900 h and at 6 h after feed delivery on d 3 and 5 of wk 4. The time for which rumen pH was below 5.6 was 56.4, 225.2, and 298.8 min/d for the control, APSC, and GBSC treatments, respectively. Compared with the control, SARA challenges resulted in similar reductions in cecal digesta pH, which were 7.07, 6.86, and 6.79 for the control, APSC, and GBSC treatments, respectively. Compared with the control, only GBSC increased starch content in cecal digesta, which averaged 2.8, 2.6, and 7.4% of DM for the control, APSC, and GBSC, respectively. Free lipopolysaccharide endotoxin (LPS) concentration in rumen fluid increased from 10,405 endotoxin units (EU)/mL in the control treatment to 30,715 and 168,391 EU/mL in APSC and GBSC, respectively. Additionally, GBSC increased the LPS concentration from 16,508 to 118,522 EU/g in wet cecal digesta, and from 12,832 to 93,154 EU/g in wet feces. The APSC treatment did not affect LPS concentrations in cecal digesta and feces. All concentrations of LPS in blood plasma were below the detection limit of >0.05 EU/mL of the technique used. Despite the absence of LPS in blood, only GBSC increased the concentration of LPS-binding protein in blood plasma, which averaged, 8.9, 9.5, and 12.1mg/L for the control, APSC, and GBSC treatments, respectively. This suggests that GBSC caused translocation of LPS from the digestive tract but that LPS was detoxified before entering the peripheral blood circulation. The higher LPS concentration in cecal digesta in the GBSC compared with the APSC suggests a higher risk of LPS translocation in the large intestine in GBSC than in APSC.
SUMMARY Previous efforts to identify cross-neutralizing antibodies to the receptor binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS, cross-neutralizes Ebola (EBOV), Sudan (SUDV), and to a lesser extent Bundibugyo viruses, and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™, is remarkably effective against EBOV (Zaire), but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.
Influenza A virus exerts a large health burden during both yearly epidemics and global pandemics. However, designing effective vaccine and treatment options has proven difficult since the virus evolves rapidly. Therefore, it may be beneficial to identify host proteins associated with viral infection and replication to establish potential new antiviral targets. We have previously measured host protein responses in continuously cultured A549 cells infected with mouse-adapted virus strain A/PR/8/34(H1N1; PR8). We here identify and measure host proteins differentially regulated in more relevant primary human bronchial airway epithelial (HBAE) cells. A total of 3740 cytosolic HBAE proteins were identified by 2D LC–MS/MS, of which 52 were up-regulated ≥2-fold and 41 were down-regulated ≥2-fold after PR8 infection. Up-regulated HBAE proteins clustered primarily into interferon signaling, other host defense processes, and molecular transport, whereas down-regulated proteins were associated with cell death signaling pathways, cell adhesion and motility, and lipid metabolism. Comparison to influenza-infected A549 cells indicated some common influenza-induced host cell alterations, including defense response, molecular transport proteins, and cell adhesion. However, HBAE-specific alterations consisted of interferon and cell death signaling. These data point to important differences between influenza replication in continuous and primary cell lines and/or alveolar and bronchial epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.