Today, approximately 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70 percent will be living in cities. The population growth and the related global urbanization pose one of the major challenges to a sustainable future. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development.A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4 arcsec (∼ 12m) that provides -for the first time -a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework -the Urban Footprint Processor (UFP) -that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3m ground resolution collected in 2011-2012. The UFP consists of five main technical modules for data management, feature extraction, unsupervised classification, mosaicking and post-editing. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. The Kappa coefficient of agreement compared to absolute ground truth data, for instance, shows GUF accuracies which are frequently twice as high as those of established low resolution maps. Generally, the GUF layer achieves an overall absolute accuracy of about 85%, with observed minima around 65% and maxima around 98 arXiv:1706.04862v1 [physics.soc-ph]
Abstract:The TerraSAR-X (TSX) mission provides a distinguished collection of high resolution satellite images that shows great promise for a global monitoring of human settlements. Hence, the German Aerospace Center (DLR) has developed the Urban Footprint Processor (UFP) that represents an operational framework for the mapping of built-up areas based on a mass processing and analysis of TSX imagery. The UFP includes functionalities for data management, feature extraction, unsupervised classification, mosaicking, and post-editing. Based on >180.000 TSX StripMap scenes, the UFP was used in 2016 to derive a global map of human presence on Earth in a so far unique spatial resolution of 12 m per grid cell: the Global Urban Footprint (GUF). This work provides a comprehensive summary of the major achievements related to the Global Urban Footprint initiative, with dedicated sections focusing on aspects such as UFP methodology, basic product characteristics (specification, accuracy, global figures on urbanization derived from GUF), the user community, and the already initiated future roadmap of follow-on activities and products. The active community of >250 institutions already working with the GUF data documents the relevance and suitability of the GUF initiative and the underlying high-resolution SAR imagery with respect to the provision of key information on the human presence on earth and the global human settlements properties and patterns, respectively.
In the production of gridded population maps, remotely sensed, human settlement datasets rank among the most important geographical factors to estimate population densities and distributions at regional and global scales. Within this context, the German Aerospace Centre (DLR) has developed a new suite of global layers, which accurately describe the built-up environment and its characteristics at high spatial resolution: (i) the World Settlement Footprint 2015 layer (WSF-2015), a binary settlement mask; and (ii) the experimental World Settlement Footprint Density 2015 layer (WSF-2015-Density), representing the percentage of impervious surface. This research systematically compares the effectiveness of both layers for producing population distribution maps through a dasymetric mapping approach in nine low-, middle-, and highly urbanised countries. Results indicate that the WSF-2015-Density layer can produce population distribution maps with higher qualitative and quantitative accuracies in comparison to the already established binary approach, especially in those countries where a good percentage of building structures have been identified within the rural areas. Moreover, our results suggest that population distribution accuracies could substantially improve through the dynamic preselection of the input layers and the correct parameterisation of the Settlement Size Complexity (SSC) index.
The European Sentinel missions and the latest generation of the United States Landsat satellites provide new opportunities for global environmental monitoring. They acquire imagery at spatial resolutions between 10 and 60 m in a temporal and spatial coverage that could before only be realized on the basis of lower resolution Earth observation data (>250 m). However, images gathered by these modern missions rapidly add up to data volume that can no longer be handled with standard work stations and software solutions. Hence, this contribution introduces the TimeScan concept which combines pre-existing tools to an exemplary modular pipeline for the flexible and scalable processing of massive image data collections on a variety of (private or public) computing clusters. The TimeScan framework covers solutions for data access to arbitrary mission archives (with different data provisioning policies) and data ingestion into a processing environment (EO2Data module), mission specific pre-processing of multi-temporal data collections (Data2TimeS module), and the generation of a final TimeScan baseline product (TimeS2Stats module) providing a spectrally and temporally harmonized representation of the observed surfaces. Technically, a TimeScan layer aggregates the information content of hundreds or thousands of single images available for the area and time period of interest (i.e. up to hundreds of TBs or even PBs of data) into a higher level product with significantly reduced volume. In first test, the TimeScan pipeline has been used to process a global coverage of 452,799 multispectral Landsat-8 scenes acquired from 2013 to 2015, a global data-set of 25,550 Envisat ASAR radar images collected 2010-2012, and regional Sentinel-1 and Sentinel-2 collections of ∼1500 images acquired from 2014 to 2016. The resulting TimeScan products have already been successfully used in various studies related to the large-scale monitoring of environmental processes and their temporal dynamics. ARTICLE HISTORY
Vegetation structure is a key component in assessing habitat quality for wildlife and carbon storage capacity of forests. Studies conducted at global scale demonstrate the increasing pressure of the agricultural frontier on tropical forest, endangering their continuity and biodiversity within. The Paraguayan Chaco has been identified as one of the regions with the highest rate of deforestation in South America. Uninterrupted deforestation activities over the last 30 years have resulted in the loss of 27% of its original cover. The present study focuses on the assessment of vegetation structure characteristics for the complete Paraguayan Chaco by fusing Sentinel-1, -2 and novel spaceborne Light Detection and Ranging (LiDAR) samples from the Global Ecosystem Dynamics Investigation (GEDI). The large study area (240,000 km2) calls for a workflow in the cloud computing environment of Google Earth Engine (GEE) which efficiently processes the multi-temporal and multi-sensor data sets for extrapolation in a tile-based random forest (RF) regression model. GEDI-derived attributes of vegetation structure are available since December 2019, opening novel research perspectives to assess vegetation structure composition in remote areas and at large-scale. Therefore, the combination of global mapping missions, such as Landsat and Sentinel, are predestined to be combined with GEDI data, in order to identify priority areas for nature conservation. Nevertheless, a comprehensive assessment of the vegetation structure of the Paraguayan Chaco has not been conducted yet. For that reason, the present methodology was developed to generate the first high-resolution maps (10 m) of canopy height, total canopy cover, Plant-Area-Index and Foliage-Height-Diversity-Index. The complex ecosystems of the Paraguayan Chaco ranging from arid to humid climates can be described by canopy height values from 1.8 to 17.6 m and canopy covers from sparse to dense (total canopy cover: 0 to 78.1%). Model accuracy according to median R2 amounts to 64.0% for canopy height, 61.4% for total canopy cover, 50.6% for Plant-Area-Index and 48.0% for Foliage-Height-Diversity-Index. The generated maps of vegetation structure should promote environmental-sound land use and conservation strategies in the Paraguayan Chaco, to meet the challenges of expanding agricultural fields and increasing demand of cattle ranching products, which are dominant drivers of tropical forest loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.