At mucosal surfaces, the immune system should not initiate inflammatory immune responses to the plethora of antigens constantly present in the environment, but should remain poised to unleash a potent assault on intestinal pathogens. The transcriptional programs and regulatory factors required for immune cells to switch from homeostatic (often tissue-protective) function to potent antimicrobial immunity are poorly defined. Mucosal retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt(+)) innate lymphoid cells (ILCs) are emerging as an important innate lymphocyte population required for immunity to intestinal infections. Various subsets of RORγt(+) ILCs have been described but the transcriptional programs controlling their specification and fate remain largely unknown. Here we provide evidence that the transcription factor T-bet determines the fate of a distinct lineage of CCR6(-)RORγt(+) ILCs. Postnatally emerging CCR6(-)RORγt(+) ILCs upregulated T-bet and this was controlled by cues from the commensal microbiota and interleukin-23 (IL-23). In contrast, CCR6(+)RORγt(+) ILCs, which arise earlier during ontogeny, did not express T-bet. T-bet instructed the expression of T-bet target genes such as interferon-γ (IFN-γ) and of the natural cytotoxicity receptor NKp46. Mice genetically lacking T-bet showed normal development of CCR6(-)RORγt(+) ILCs, but they could not differentiate into NKp46-expressing RORγt(+) ILCs (that is, IL-22-producing natural killer (NK-22) cells) and failed to produce IFN-γ. The production of IFN-γ by T-bet-expressing CCR6(-)RORγt(+) ILCs was essential for the release of mucus-forming glycoproteins required to protect the epithelial barrier during Salmonella enterica infection. Salmonella infection also causes severe enterocolitis that is at least partly driven by IFN-γ. Mice deficient for T-bet or depleted of ILCs developed only mild enterocolitis. Thus, graded expression of T-bet in CCR6(-)RORγt(+) ILCs facilitates the differentiation of IFN-γ-producing CCR6(-)RORγt(+) ILCs required to protect the epithelial barrier against Salmonella infections. Co-expression of T-bet and RORγt, which is also found in subsets of IL-17-producing T-helper (T(H)17) cells, may be an evolutionarily conserved transcriptional program that originally developed as part of the innate defence against infections but that also confers an increased risk of immune-mediated pathology.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has emerged as a crucial cytokine produced by auto-reactive T helper (Th) cells that initiate tissue inflammation. Multiple cell types can sense GM-CSF, but the identity of the pathogenic GM-CSF-responsive cells is unclear. By using conditional gene targeting, we systematically deleted the GM-CSF receptor (Csf2rb) in specific subpopulations throughout the myeloid lineages. Experimental autoimmune encephalomyelitis (EAE) progressed normally when either classical dendritic cells (cDCs) or neutrophils lacked GM-CSF responsiveness. The development of tissue-invading monocyte-derived dendritic cells (moDCs) was also unperturbed upon Csf2rb deletion. Instead, deletion of Csf2rb in CCR2(+)Ly6C(hi) monocytes phenocopied the EAE resistance seen in complete Csf2rb-deficient mice. High-dimensional analysis of tissue-infiltrating moDCs revealed that GM-CSF initiates a combination of inflammatory mechanisms. These results indicate that GM-CSF signaling controls a pathogenic expression signature in CCR2(+)Ly6C(hi) monocytes and their progeny, which was essential for tissue damage.
Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
The clear association of Th17 cells with autoimmune pathogenicity implicates Th17 cytokines as critical mediators of chronic autoimmune diseases such as EAE. To study the impact of IL-17A on CNS inflammation, we generated transgenic mice in which high levels of expression of IL-17A could be initiated after Cre-mediated recombination. Although ubiquitous overexpression of IL-17A led to skin inflammation and granulocytosis, T cell-specific IL-17A overexpression did not have a perceptible impact on the development and health of the mice. In the context of EAE, neither the T cell-driven overexpression of IL-17A nor its complete loss had a major impact on the development of clinical disease. Since IL-17F may be able to compensate for the loss of IL-17A, we also generated IL-17F-deficient mice. This strain was fully susceptible to EAE and displayed unaltered emergence and expansion of autoreactive T cells during disease. To eliminate potential compensatory effects of either cytokine, we treated IL-17F-deficient mice with antagonistic monoclonal antibodies specific for IL-17A and found again only a minimal beneficial impact on disease development. We conclude therefore that both IL-17A and IL-17F, while prominently expressed by an encephalitogenic T cell population, may only marginally contribute to the development of autoimmune CNS disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.