Transition-metal-catalyzed, coordination-assisted C(sp 3 )−H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transitionmetal-catalyzed, direct functionalization of nonactivated C(sp 3 )−H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
CuCl or pre-generated CuCF3 reacts with CF3 SiMe3 /KF in DMF in air to give [Cu(CF3 )4 ](-) quantitatively. [PPN](+) , [Me4 N](+) , [Bu4 N](+) , [PhCH2 NEt3 ](+) , and [Ph4 P](+) salts of [Cu(CF3 )4 ](-) were prepared and isolated spectroscopically and analytically pure in 82-99% yield. X-ray structures of the [PPN](+) , [Me4 N](+) , [Bu4 N](+) , and [Ph4 P](+) salts were determined. A new synthetic strategy with [Cu(CF3 )4 ](-) was demonstrated, involving the removal of one CF3 (-) from the Cu atom in the presence of an incoming ligand. A novel Cu(III) complex [(bpy)Cu(CF3 )3 ] was thus prepared and fully characterized, including by single-crystal X-ray diffraction. The bpy complex is highly fluxional in solution, the barrier to degenerate isomerization being only 2.3 kcal mol(-1) . An NPA study reveals a huge difference in the charge on the Cu atom in [Cu(CR3 )4 ](-) for R=F (+0.19) and R=H (+0.46), suggesting a higher electron density on Cu in the fluorinated complex.
An O–Si bond construction protocol employing abundantly available and inexpensive NaOH as the catalyst is described. The method enables the cross-dehydrogenative coupling of an alcohol and hydrosilane to directly generate the corresponding silyl ether under mild conditions and without the production of stoichiometric salt byproducts. The scope of both coupling partners is excellent, positioning the method for use in complex molecule and materials science applications. A novel Si-based cross-coupling reagent is also reported.
A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to orchestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with traditional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck reactivity of internal alkenes, providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this directing group, an arene C–H olefination method was also successfully developed. Reaction progress kinetic analysis provides insights into the role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this (BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination, allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products (+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S-directed C–H olefination as the key step.
Abstract2,3-Dihydrobenzofurans and indolines are common substructures in medicines and natural products. Herein, we describe a method that enables direct access to these core structures from non-conjugated alkenyl amides and ortho-iodoanilines/phenols. Under palladium(II) catalysis this [3 + 2] heteroannulation proceeds in an anti-selective fashion and tolerates a wide variety of functional groups. N-Acetyl, -tosyl, and -alkyl substituted ortho-iodoanilines, as well as free –NH2 variants, are all effective. Preliminary results with carbon-based coupling partners also demonstrate the viability of forming indane core structures using this approach. Experimental and computational studies on reactions with phenols support a mechanism involving turnover-limiting, endergonic directed oxypalladation, followed by intramolecular oxidative addition and reductive elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.