Nine derivatives of chloro boron subphthalocyanine (Cl-BsubPc, 1) have been synthesized and characterized. Seven dimers of Cl-BsubPc have been synthesized by reaction with biphenol (2a), bisphenol A (2b), bisphenol F (2c), bisphenol O (2d), bisphenol P (2e), bisphenol S (2f) and bisphenol Z (2g). For comparison two monomeric phenoxy- (3a) and 4-methylphenoxy (3b) BsubPcs have also been synthesized. Crystals were grown for dimer 2c, whereas all attempts to grow crystals of the remaining dimers resulted in the formation of molecular glasses or amorphous precipitates. Analysis on the structure of 2c suggests that the rigidity and aromatic nature of the central bisphenolic directs the crystal packing. The solubility of the BsubPc dimers in a variety of common organic solvents was measured and compared to that of Cl-BsubPc (2) and monomers 3a and 3b. We have defined ranges for classifying BsubPc derivatives based on their solubility in these solvents: pigment < or = 1 x 10(-8) M, 1 x 10(-3) M < or = pigment-like > 1 x 10(-8) M, 1 x 10(-2) M < or = dye-like > 1 x 10(-3) M, and dye > 1 x 10(-2) M. From this Cl-BsubPc (1) and compounds 2a, 2b, 2c, 2e and 2g are pigment-like while compounds 2d, 2f, 3a and 3b are dye-like. None are exclusively pigments or dyes. In this first approximation of this dye versus pigment classification we have not considered other processes besides solvation which could be undesirable such as polymorphic changes or Ostwald ripening. We have concluded that derivatization of Cl-BsubPc (1) with bisphenols and phenols can be used to control the solubility of BsubPc derivatives. We have also concluded that Cl-BsubPc (1) should not be considered a dye rather is pigment-like in its solubility.
We report the rapid screening of phenoxyboronsubphthalocyanine (PhO-BsubPc) derivatives for sensitivity of their HOMO and LUMO energy levels (E H and E L) to substitution with electron-donating and electron-withdrawing functional groups using semiempirical methods. Subsequently, we have synthesized a selection of seven PhO-BsubPc derivatives, further modeled the seven derivatives using DFT methods, and measured or determined their respective E H and E L. We have used a combination of ultraviolet photoelectron spectroscopy (UPS), cyclic voltammetry (CV), and ultraviolet–visible (UV–vis) spectroscopy to correlate the computational predictions with experimental data. From these experimental and computational results, we have shown that E H and E L of PhO-BsubPcs are more sensitive to peripheral substitutions than to substitution on the axial phenoxylate. The frontier molecular orbitals, calculated using DFT methods, were found to be exclusively located on the boronsubphthalocyanine ligand among the seven PhO-BsubPc derivatives. A mathematical model correlating computational results with experimental data was determined which can be subsequently used to rapidly predict how structural factors influence the E H and E L to direct synthetic and engineering efforts.
The physical properties, including the solid state arrangement, photophysics, solubility, and electrochemical behavior of a series of halo-BsubPcs (halo = F, Cl, Br) have been measured (IUPAC name halo-(7,12:14,19-diimino-21,5-nitrilo-5H-tribenzo(c,h,m)(1,6,11)triazacyclopentadecinato)-boron(III)). We have found that across the series all are relatively similar in most regards. Exceptions include that F-BsubPc can be 5 to 25 times more soluble than Cl-BsubPc in common organic solvents. F-BsubPc was also found to be hydrolytically stable under the conditions tested, whereas Cl-BsubPc and Br-BsubPc readily hydrolyzed to form HO-BsubPc. The relative rates of reaction for the series of halo-BsubPcs under standard phenoxylation conditions have also been measured. It was found that F-BsubPc does not undergo phenoxylation, whereas Br-BsubPc showed a markedly higher reaction rate relative to Cl-BsubPc. Based on these data some assumptions can be made as to the suitability of either F-BsubPc or Br-BsubPc to be used in place of the more common Cl-BsubPc. The data indicate that F-BsubPc is a potential replacement for Cl-BsubPc in organic electronic materials whereas Br-BsubPc might be more suitable as a chemical intermediate. Comments on the synthetic methods used to produce each halo-BsubPc are also made.
In this paper, we discuss the use of the typical electron-donor (donor) material boron subphthalocyanine chloride (Cl-BsubPc) and a chlorinated derivative (hexachloro boron subphthalocyanine chloride, Cl–Cl6BsubPc) to act as electron-accepting (acceptor) materials and as replacements for C60, when coupled with tetracene and pentacene as the electron-donor materials in organic photovoltaics (OPVs). A large decrease in photocurrent was observed when C60 was replaced in the pentacene OPVs, although there was evidence of the harvesting of some triplets for the pentacene/Cl–Cl6BsubPc OPV. Large increases in V oc and stability were observed. Photoluminescence quenching, electron mobilities, and photovoltaic device characteristics are also presented and indicate the ambipolar quality of these small molecule organic semiconductors.
We report the synthesis and systematic description of a series of five para-substituted phenoxy-BsubPcs including their characterization in the crystal state. The nature of the substituents on the phenoxy molecular fragment was chosen so as to vary both the size and electronegativity: specifically with increasingly bulky para-alkyl groups from hydrogen to tert-octyl and a single electronegative substitute (F). Examination of the arrangement of the phenoxy-BsubPcs within single crystals allows us to place each into one of the two categories. The first, which contains all but one of the derivatives, has a repeating motif which is made up of dimers of the BsubPc molecular fragments. The second, containing only the derivative possessing the large tert-octyl substituent, is characterized by the formation of ribbons instead of dimers of the BsubPc fragment. Regardless of motif the arrangement of the BsubPc molecular fragments was found to be convace-concave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.