Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.
Abstract. Wake steering is a form of wind farm control in which turbines use
yaw offsets to affect wakes in order to yield an increase in total energy
production. In this first phase of a study of wake steering at a commercial
wind farm, two turbines implement a schedule of offsets. Results exploring
the observed performance of wake steering are presented and some
first lessons learned. For two closely spaced turbines, an approximate
14 % increase in energy was measured on the downstream turbine over a
10∘ sector, with a 4 % increase in energy production of the
combined upstream–downstream turbine pair. Finally, the influence of
atmospheric stability over the results is explored.
Wind turbines are often sited together in wind farms as it is economically advantageous. However, the wake inevitably created by every turbine will lead to a time-varying interaction between the individual turbines. Common practice in industry has been to control turbines individually and ignore this interaction while optimizing the power and loads of the individual turbines. However, turbines that are in a wake experience reduced wind speed and increased turbulence, leading to a reduced energy extraction and increased dynamic mechanical loads on the turbine, respectively. Neglecting the dynamic interaction between turbines in control will therefore lead to suboptimal behaviour of the total wind farm. Therefore, wind farm control has been receiving an increasing amount of attention over the past years, with the focus on increasing the total power production and reducing the dynamic loading on the turbines. In this paper, wind farm control-oriented modeling and control concepts are explained. In addition, recent developments and literature are discussed and categorized. This paper can serve as a source of background information and provides many references regarding control-oriented modeling and control of wind farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.