Abstract. Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT) and Potential Aerosol Mass (PAM) flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-tovolume (SA/V) ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1) transmission efficiency measurements for CO 2 , SO 2 , and bis(2-ethylhexyl) sebacate (BES) particles, (2) H 2 SO 4 yield measurements from the oxidation of SO 2 , (3) residence time distribution (RTD) measurements for CO 2 , SO 2 , and BES particles, (4) aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN) activity measurements of BES particles exposed to OH radicals, and (5) aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA) generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0 ± 1.0) × 10 10 to (1.8 ± 0.3) × 10 12 molec cm −3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO 2 was lower than that for the PAM. Transmission efficiency for BES and H 2 SO 4 particles was size-dependent and was similar for the two flowCorrespondence to: T. B. Onasch (onasch@aerodyne.com) tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 10 11 molec cm −3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and operating conditions, with wall interactions seemingly having the strongest influence on SOA yield. At comparable OH exposures, flow tube SOA was more oxidized than smog chamber SOA, possibly because of faster gas-phase oxidation relative to particle nucleation. SOA yields were lower in the TPOT than in the PAM, but CCN activity of flow-tubegenerated SOA particles was similar. For comparable OH exposures, α-pinene SOA yields were similar in the PAM and Caltech chambers, but m-xylene SOA yields were much lower in the PAM compared to the Caltech chamber.
Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF90%), the CCN activity (κORG,CCN) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF90% and κORG,CCN increased with O:C; the HGF90% varied linearly with O:C, while κORG,CCN mostly followed a nonlinear trend. An average HGF90% of 1.25 and κORG,CCN of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The κORG values estimated from the HGF90% (κORG,HGF) were 20 to 50% lower than paired κORG,CCN values for all SOA particles except 1,3,5‐trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition.
Secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA) were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O<sub>3</sub> in a Potential Aerosol Mass (PAM) flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS). The fraction of AMS signal at <i>m/z</i> = 43 and <i>m/z</i> = 44 (<i>f</i><sub>43</sub>, <i>f</i><sub>44</sub>), the hydrogen-to-carbon (H/C) ratio, and the oxygen-to-carbon (O/C) ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA). The results show that PAM-generated SOA and OPOA can reproduce and extend the observed <i>f</i><sub>44</sub>–<i>f</i><sub>43</sub> composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN) activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κ<sub>org</sub>, ranged from 8.4×10<sup>−4</sup> to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κ<sub>org</sub> and O/C ratio is significantly wider than has been previously obtained. To first order, the κ<sub>org</sub>-to-O/C relationship is well represented by a linear function of the form κ<sub>org</sub> = (0.18±0.04) ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and oxidation level can be defined for use in chemistry and climate models
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.