Although efforts have been made to identify circadian-controlled genes regulating cell cycle progression and cell death, little is known about the metabolic signals modulating circadian regulation of gene expression. We identify heme, an iron-containing prosthetic group, as a regulatory ligand controlling human Period-2 (hPer2) stability. Furthermore, we define a novel heme-regulatory motif within the C terminus of hPer2 (SC 841 PA) as necessary for heme binding and protein destabilization. Spectroscopy reveals that whereas the PAS domain binds to both the ferric and ferrous forms of heme, SC 841 PA binds exclusively to ferric heme, thus acting as a redox sensor. Consequently, binding prevents hPer2 from interacting with its stabilizing counterpart cryptochrome. In vivo, hPer2 downregulation is suppressed by inhibitors of heme synthesis or proteasome activity, while SA 841 PA is sufficient to stabilize hPer2 in transfected cells. Moreover, heme binding to the SC 841 PA motif directly impacts circadian gene expression, resulting in altered period length. Overall, the data support a model where heme-mediated oxidation triggers hPer2 degradation, thus controlling heterodimerization and ultimately gene transcription.Cellular homeostasis depends on a delicate balance between metabolic activity and gene expression. Heme is a prosthetic group essential for transport and storage of oxygen that is involved in the generation of cellular energy by respiration and synthesis and degradation of lipids and in oxidative damage. Heme-based sensor proteins detect and respond to variations in oxygen, carbon monoxide, and nitric oxide levels and cellular redox state by acting on transcription, translation, protein translocation, and protein assembly (8,25).Heme binding to transcription factors is found in both prokaryotes and lower eukaryotes; however, only three cases have been identified in higher eukaryotes: the basic leucine zipper transcription factor Bach1, the circadian transcription factor NPAS2, and the nuclear orphan receptor 23,30,
Abstract:Major advances in therapeutic proteins, including antibody-drug conjugates (ADCs), have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS) and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.
Despite the numerous advantages that CMA formulations provide, their clinical use is still in its infancy. It is critical that we understand the mechanisms and effects of CMAs in navigating biological barriers and how these factors affect their biodistribution and delivery to tumors. Future studies are warranted to better understand the complex pharmacology and interaction between CMA carriers and biological systems, such as the mononuclear phagocyte system and tumor microenvironment.
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.