Assume that for some α < 1 and for all nutural n a set Fn of at most 2 αn "forbidden" binary strings of length n is fixed. Then there exists an infinite binary sequence ω that does not have (long) forbidden substrings. We prove this combinatorial statement by translating it into a statement about Kolmogorov complexity and compare this proof with a combinatorial one based on Laslo Lovasz local lemma. Then we construct an almost periodic sequence with the same property (thus combines the results from [1] and [2]). Both the combinatorial proof and Kolmogorov complexity argument can be generalized to the multidimensional case.
D. Krieger and J. Shallit have proved that every real number greater than 1 is a critical exponent of some sequence [1]. We show how this result can be derived from some general statements about sequences whose subsequences have (almost) maximal Kolmogorov complexity. In this way one can also construct a sequence that has no "approximate" fractional powers with exponent that exceeds a given value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.