Abstract. In 2010 a national team (Team 9) developed the hazard curve and maximum considered earthquake (MCE) for the whole Indonesian area. The results were further applied in this study. Risk-targeted ground motions (RTGM) with 1% probability of building collapse in 50 years were developed by integrating the hazard curve with the structural capacity distribution. Parametric study on various variables that affect the log-normal standard deviation suggests a value of 0.7. In the effort to obtain the RTGM for the whole Indonesian region, integration was carried out using definite integration in which the curves are split into thin vertical strips and the areas below each curve are multiplied and summed. Detailed procedures and verification are given in this paper. An example of RTGM calculation was carried out for Jakarta City and then applied to the whole Indonesian region. Risk coefficients defining the ratio between RTGM and MCE were eventually developed and mapped. Risk coefficient development was generated for two periods of interest, i.e. a short time period (T = 0.2 seconds) and a 1-second period, respectively. Based on the results, for the period of 1.0 seconds 55% of Indonesian cities/districts have a risk coefficient in the range of 0.9 to 1.1 and about 37% in the range of 0.7 to 0.9, with only 5% in the range of 1.1 to 1.25.
Indonesia has followed development of new seismic design criteria in the new seismic building codes, from hazard-based in the former SNI-03-1726-2002 to the current risk-based SNI-1726-2012. The major changes in SNI-1726-2012 are using Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration maps. Five years later (2017), the seismic hazard maps have been updated adopting the most recent data and current state of knowledge in probabilistic and deterministic seismic hazard assessment methodologies. To establish the New 2019 Risk Targeted Ground Motion (RTGM) of spectral acceleration (Ss and S1), and risk coefficients (CRS and CR1), for both short (T=0.2s) and 1-second (T=1s) periods, respectively have been developed based on the 2017 Indonesian hazard maps. The RTGM was calculated as the spectral value resulting in 1% probability of building collapse in 50 years through numerical integration of hazard curves and structural capacity. The log-normal standard deviation (?) of the structural capacity envelope has been revised from 0.70 to 0.65. This paper presents the new resulted RTGM maps. Furthermore, the paper also presents revision of seismic amplification factors for 0, 0.2, and 1 second periods (FPGA, Fa, and, Fv) to generate ground surface maximum and design spectra associated with the siteclassifications.
Indonesia has developed new seismic building code based on risk-targeted ground-motions adopting 1 % probability of building collapse in 50 years. The new seismic design criterion, which is presented in the code, have combined both seismic hazard and building fragility. For performance-based analysis of high-rise buildings, a complex non-linear time-history analysis is needed. This paper presents results of study on development of the time-history with emphasing on procedure of developing pairs of time-history at ground surface for spesific site in Jakarta with reference to 2012 International Building Codes and ASCE-SEI-7-10. The study involves generation of time-history from reference base-rock through site-response analysis to ground surface. Development of time-history at ground surface with a procedure involving Square Root of the Sum of the Square method (SRSS) in order to reasonably scaled time-histories through spectral matching technique is presented herein. The matched time-histories are developed from various strong-motion records representing different earthquake sources dominant to control the site evaluated from de-aggregation within seismic hazard analysis. This work also adopts baseline corrections in which velocity and displacement components of matched time-histories can be drifted to zero at the end of recorded seismic time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.