Analytical multidomain solutions to the dynamical (Landau-Lifshitz-Gilbert) equation of a one-dimensional ferromagnet including an external magnetic field and spin-polarized electric current are found using the Hirota bilinearization method. A standard approach to solve the Landau-Lifshitz equation (without the Gilbert term) is modified in order to treat the dissipative dynamics. I establish the relations between the spin interaction parameters (the constants of exchange, anisotropy, dissipation, external-field intensity, and electric-current intensity) and the domain-wall parameters (width and velocity) and compare them to the results of the Walker approximation and micromagnetic simulations. The domain-wall motion driven by a longitudinal external field is analyzed with especial relevance to the field-induced collision of two domain walls. I determine the result of such a collision (which is found to be an elastic one) on the domain-wall parameters below and above the Walker breakdown (in weak- and strong-field regimes). Single-domain-wall dynamics in the presence of an external transverse field is studied with relevance to the challenge of increasing the domain-wall velocity below the breakdown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.