AD risk loci polygenically contribute to Aβ pathology in the CSF and temporal cortex, and this effect is potentially associated with increased γ-secretase activity.
ObjectivesTo understand the relation between risk genes for Alzheimer’s disease (AD) and their influence on biomarkers for AD, we examined the association of AD in the Finnish cohort with single nucleotide polymorphisms (SNPs) from top AlzGene loci, genome-wide association studies (GWAS), and candidate gene studies; and tested the correlation between these SNPs and AD markers Aβ1–42, total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF).MethodsWe tested 25 SNPs for genetic association with clinical AD in our cohort comprised of 890 AD patients and 701-age matched healthy controls using logistic regression. For the correlational study with biomarkers, we tested 36 SNPs in a subset of 222 AD patients with available CSF using mixed models. Statistical analyses were adjusted for age, gender and APOE status. False discovery rate for multiple testing was applied. All participants were from academic hospital and research institutions in Finland.Results APOE-ε4, CLU rs11136000, and MS4A4A rs2304933 correlated with significantly decreased Aβ1–42 (corrected p<0.05). At an uncorrected p<0.05, PPP3R1 rs1868402 and MAPT rs2435211 were related with increased t-tau; while SORL1 rs73595277 and MAPT rs16940758, with increased p-tau. Only TOMM40 rs2075650 showed association with clinical AD after adjusting for APOE-ε4 (p = 0.007), but not after multiple test correction (p>0.05).ConclusionsWe provide evidence that APOE-ε4, CLU and MS4A4A, which have been identified in GWAS to be associated with AD, also significantly reduced CSF Aβ1–42 in AD. None of the other AlzGene and GWAS loci showed significant effects on CSF tau. The effects of other SNPs on CSF biomarkers and clinical AD diagnosis did not reach statistical significance. Our findings suggest that APOE-ε4, CLU and MS4A4A influence both AD risk and CSF Aβ1–42.
BackgroundWe developed multifactorial models for predicting incident dementia and brain pathology in the oldest old using the Vantaa 85+ cohort.MethodsWe included participants without dementia at baseline and at least 2 years of follow-up (N = 245) for dementia prediction or with autopsy data (N = 163) for pathology. A supervised machine learning method was used for model development, considering sociodemographic, cognitive, clinical, vascular, and lifestyle factors, as well as APOE genotype. Neuropathological assessments included β-amyloid, neurofibrillary tangles and neuritic plaques, cerebral amyloid angiopathy (CAA), macro- and microscopic infarcts, α-synuclein pathology, hippocampal sclerosis, and TDP-43.ResultsPrediction model performance was evaluated using AUC for 10 × 10-fold cross-validation. Overall AUCs were 0.73 for dementia, 0.64–0.68 for Alzheimer’s disease (AD)- or amyloid-related pathologies, 0.72 for macroinfarcts, and 0.61 for microinfarcts. Predictors for dementia were different from those in previous reports of younger populations; for example, age, sex, and vascular and lifestyle factors were not predictive. Predictors for dementia versus pathology were also different, because cognition and education predicted dementia but not AD- or amyloid-related pathologies. APOE genotype was most consistently present across all models. APOE alleles had a different impact: ε4 did not predict dementia, but it did predict all AD- or amyloid-related pathologies; ε2 predicted dementia, but it was protective against amyloid and neuropathological AD; and ε3ε3 was protective against dementia, neurofibrillary tangles, and CAA. Very few other factors were predictive of pathology.ConclusionsDifferences between predictors for dementia in younger old versus oldest old populations, as well as for dementia versus pathology, should be considered more carefully in future studies.Electronic supplementary materialThe online version of this article (10.1186/s13195-018-0450-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.