Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica’s phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Background: Cruciferous sprouts (Brassicaceae) are rich in glucosinolates (GSL) as health-promoters involved in the prevention and modulation of different pathological conditions. Only recently has the use of LEDs been implemented in food production in order to reduce energy costs and to facilitate soil-less systems for producing edible sprouts. The aim of this research was to obtain cruciferous sprouts enriched in bioactive compounds (GSL) by means of soil-less production using LEDs and Methyl-Jasmonate as elicitors. Methods: Seeds of broccoli, red radish, red cabbage, and white mustard varieties for sprouting, were sanitized (2 h) and water imbibed (22 h) before sowing and growing in the dark (2 d). The 3-day old sprouts were transferred to growth chamber under 18/6 h photoperiod, with controlled relative humidity (60/80%) and LED lights (Experimental vs. Commercial) with spraying Methyl-Jasmonate (250 µM) as elicitor. The germination efficiency, biomass production, and GSL contents were analysed. Results: The LED treatments affected the fresh biomass production. The GSL analysis revealed qualitative differences and suggested the potential of using spe specific GSL as markers of every variety: glucoraphanin in broccoli; Dehydro-Erucin in radish; hydroxybenzyl-GLS in mustard, and glucoerucin in red cabbage. The combination of LED lighting and MeJA is a promising tool for increasing GSL contents in sprouts, rendering healthier fresh foods or ingredients for functional products.
This work studies the enhancement of glucosinolates (GSLs) in mustard sprouts as health promoters. Sprouts of Sinapis alba, Brassica nigra, and B. carinata were grown under broad-spectrum, monochromatic blue or red light-emitting diode (LED) lamps, irrigated with 0–100 mM sodium chloride (NaCl), and sprayed with 0–250 µM methyl jasmonate (MeJA) as elicitor. The use of LEDs did not result in increased sprout biomass in any case. The effect of the applied treatments on the GSLs depended on the species and were restricted to Brassica spp. The red LEDs produced an overall increase in GSLs over 500% in B. carinata (from 12 to 81 mg 100 g−1 F.W.), compared to the white broad-spectrum lights, although the highest increase in content was obtained in treated sprouts with 250 µM MeJA (104 an 105 mg 101 g−1 F.W., under the red and blue LEDs, respectively). The combination of blue LEDs, 100 mM NaCl, and 250 µM MeJA enhanced the levels of GLSs in B. nigra to the maximum (81 mg 100 g−1 F.W.). Overall, these results indicate that by modifying the growing conditions for a given sprout, enhancement in the accumulation of GSLs as health promoters is possible. The use of these treatments is a sustainable alternative to genetic modification when looking for bioactive-enriched foods, delivering natural plant foods rich in bioactive ingredients (e.g., glucosinolates). Nevertheless, the response to the treatments varies among species, indicating that treatments will require adjustment across sprouts. Further research continues with producing cruciferous sprouts to obtain GSL-enriched formulas for further studying the effects of their bioavailability and bioactivity on health-promotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.