Single cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single nuclear sequencing datasets, mapping 30 dominant cell types to a human nephrectomy. The predicted cell type spots corresponded with the underlying histopathology. To study the implications of AKI on transcript expression, we then characterized the spatial transcriptomic signature of two murine AKI models: ischemia reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were associated with injury pathways. Using single cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. Neutrophils infiltrated the renal medulla in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubules. In the CLP model, infiltrating macrophages dominated the outer cortical signature and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by inDEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing complements single cell sequencing by uncovering mechanisms driving immune cell infiltration and detection of relevant cell subpopulations.
The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.HuBMAP was founded with the goal of establishing state-of-the-art frameworks for building spatial multiomic maps of non-diseased human organs at single-cell resolution 1 . During the first phase (2018)(2019)(2020)(2021)(2022), the priorities of the project included the validation and development of assay platforms; workflows for data processing, management, exploration and visualization; and the establishment of protocols, quality control standards and standard operating procedures. Extensive infrastructure was established through a coordinated effort among the various HuB-MAP integration, visualization and engagement teams, tissue-mapping centres, technology and tools development and rapid technology implementation teams and working groups 1 . Single-cell maps, predominantly consisting of two-dimensional (2D) spatial data as well as data from dissociated cells, were generated for several organs. The HuBMAP Data Portal (https://portal.hubmapconsortium.org) was established for open access to experimental tissue data and reference atlas data.The infrastructure was augmented with software tools for tissue data registration, processing, annotation, visualization, cell segmentation and automated annotation of cell types and cellular neighbourhoods from spatial data. Computational methods were developed for integrating multiple data types across scales and interpretation 2 . Standard reference terminology and a common coordinate framework spanning anatomical to biomolecular scales were established to ensure interoperability across organs, research groups and consortia 3 . Guidelines to capture high-quality multiplexed spatial data 4 were established including validated panels of cell-and structure-specific antibodies 5 . The first phase produced a large number of manuscripts (https://commonfund.nih.gov/ publications?pid=43) including spatially resolved single-cell maps [6][7][8][9][10][11] .The production phase of HuBMAP was launched in the autumn of 2022. The focus is on scaling data production spanning diverse biological variables (for example, age and ethnicity) and deployment and enhancement of analytical, visualization and navigational tools to generate high-resolution 3D accessible maps of major functional tissue units from more than 20 organs. This phase involves over 60 institutions and 400 researchers with opportunities for active intra-and inter-consortia collaborations and building a foundational resource for new biological insights and precision medicine. Below, ...
Uromodulin (Tamm-Horsfall protein, THP) is a glycoprotein uniquely produced in the kidney. It is released by cells of the thick ascending limbs (TAL) apically in the urine, and basolaterally in the renal interstitium and systemic circulation. Processing of mature urinary THP, which polymerizes into supra-molecular filaments, requires cleavage of an external hydrophobic patch (EHP) at the C-terminus. However, THP in the circulation is not polymerized, and it remains unclear if non-aggregated forms of THP exist natively in the urine. We propose that an alternative processing path, which retains the EHP domain, can lead to a non-polymerizing form of THP. We generated an antibody that specifically recognizes THP with retained EHP (THP+EHP) and established its presence in the urine in a non-polymerized native state. Proteomic characterization of urinary THP+EHP revealed its C-terminus ending at F617. In the human kidney, THP+EHP was detected in TAL cells, and less strongly in the renal parenchyma. Using immunoprecipitation followed by proteomic sequencing and immunoblotting, we then demonstrated that serum THP has also retained EHP. In a small cohort of patients at risk for acute kidney injury (AKI), admission urinary THP+EHP was significantly lower in patients who subsequently developed AKI during hospitalization. Our findings uncover novel insights into uromodulin biology by establishing the presence of an alternative path for cellular processing, which could explain the release of non-polymerizing THP in the circulation. Larger studies are needed to establish the utility of urinary THP+EHP as a sensitive biomarker of kidney health and susceptibility to injury.
Uromodulin (or Tamm-Horsfall protein) is a glycoprotein uniquely produced in the kidney by tubular cells of the thick ascending limb of the loop of Henle and early distal tubules. This protein exhibits bidirectional secretion in the urine and in the renal interstitium and circulation. The role of this protein in maintaining renal and systemic homeostasis is becoming increasingly appreciated. Furthermore, perturbations of its functions may play a role in various diseases affecting the kidney and distant organs. In this review, we will discuss important advances in understanding its biology, highlighting the recent discoveries of its secretion and differential precursor processing that generates 2 forms: (1) a highly polymerizing form that is apically excreted in the urine and generates filaments and (2) a nonpolymerizing form that retains a polymerization inhibitory pro-peptide and is released basolaterally in the kidney interstitium and circulation, but can also be found in the urine. We will also discuss factors regulating its production and release, taking into account its intricate physiology, and propose best practices to report its levels. We also discuss breaking advances in its role in hypertension, acute kidney injury and progression to chronic disease, immunomodulation and regulating renal and systemic oxidative stress. We anticipate that this work will be a great resource for researchers and clinicians. This review will highlight the importance of defining what regulates the 2 forms of uromodulin, so that modulation of uromodulin levels and function could become a novel tool in our therapeutic armamentarium against kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.