Tolerance to food antigen manifests in the absence and/or suppression of antigen-specific immune responses locally in the gut but also systemically, a phenomenon known as oral tolerance. Oral tolerance is thought to originate in the gut-draining lymph nodes, which support the generation of FoxP3(+) regulatory T (Treg) cells. Here we use several mouse models to show that Treg cells, after their generation in lymph nodes, need to home to the gut to undergo local expansion to install oral tolerance. Proliferation of Treg cells in the intestine and production of interleukin-10 by gut-resident macrophages was blunted in mice deficient in the chemokine (C-X3-C motif) receptor 1 (CX3CR1). We propose a model of stepwise oral tolerance induction comprising the generation of Treg cells in the gut-draining lymph nodes, followed by migration into the gut and subsequent expansion of Treg cells driven by intestinal macrophages.
Three mouse lines expressing Cre recombinase under the control of the human K14 promoter induced specific deletion of loxP flanked target sequences in the epidermis, in tongue, and thymic epithelium of the offspring where the Cre allele was inherited from the father. Where the mother carried the Cre allele, loxP flanked sequences were completely deleted in all tissues of the offspring, even in littermates that did not inherit the Cre allele. This maternally inherited phenotype indicates that the human K14 promoter is transcriptionally active in murine oocytes and that the enzyme remains active until after fertilization, even when the Cre allele becomes transmitted to the polar bodies during meiosis. Detection of K14 mRNA by RT-PCR in murine ovaries and immunohistochemical identification of the K14 protein in oocytes demonstrates that the human K14 promoter behaves like its murine homolog, thus identifying K14 as an authentic oocytic protein.
IL-10 is a potent regulator of the innate and adaptive immune responses. Several cell types produce IL-10 and its receptor chains and these may regulate different immune responses. Here we report that inactivation of the IL-10 receptor (IL-10R1) gene in mice leads to an increased susceptibility to chemically induced colitis as in the classical IL-10-deficient mutant. To identify the cells regulated by IL-10 in immune responses, we generated several cell type specific IL-10R1-deficient mutants. We show that, in an IL-10-dependent LPS model of endotoxemia, dampening of the immune response requires expression of IL-10R1 in monocytes/macrophages and/or neutrophils but not in T cells nor B cells. As the macrophage and/or neutrophil-specific IL-10-deficient mutants also display the same phenotype, our results suggest that an autocrine loop in monocytes/macrophages is the most probable mechanism for the regulation of an LPS-induced septic shock. In contrast, in an IL-10-regulated T-cell response to Trichuris muris infection, IL-10 acting on T cells or monocytes/macrophages/neutrophils is not critical for the control of the infection.
The function of ␣41 and ␣47 integrins in hematopoiesis is controversial. While some experimental evidence suggests a crucial role for these integrins in retention and expansion of progenitor cells and lymphopoiesis, others report a less important role in hematopoiesis. Using mice with a deletion of the 1 and the 7 integrin genes restricted to the hematopoietic system we show here that ␣41 and ␣47 integrins are not essential for differentiation of lymphocytes or myelocytes. However, 17 mutant mice displayed a transient increase of colonyforming unit (CFU-C) progenitors in the bone marrow and, after phenylhydrazineinduced anemia, a decreased number of splenic erythroid colony-forming units in culture (CFUe's). Array gene expression analysis of CD4 ؉ CD8 ؉ double-positive (DP) and CD4 ؊ CD8 ؊ double-negative (DN) thymocytes and CD19 ؉ and CD4 ؉ splenocytes did not provide any evidence for a compensatory mechanism explaining the mild phenotype. These data show that ␣41 and ␣47 are not required for blood cell differentiation, although in their absence alterations in numbers and distribution of progenitor cells were observed.
Leukocyte recruitment is pivotal for the initiation and perpetuation of inflammatory bowel disease (IBD) and controlled by the specificity and interactions of chemokines and adhesion molecules. Interactions of the adhesion molecules α4β7-integrin and mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) promote the accumulation of pathogenic T-cell populations in the inflamed intestine. We aimed to elucidate the significance of β7-integrin expression on innate immune cells for the pathogenesis of IBD. We demonstrate that β7-integrin deficiency protects recombination-activating gene-2 (RAG-2)-deficient mice from dextran sodium sulfate (DSS)-induced colitis and coincides with decreased numbers of colonic effector monocytes. We also show that β7-integrin is expressed on most CD11b+CD64lowLy6C+ bone marrow progenitors and contributes to colonic recruitment of these proinflammatory monocytes. Importantly, adoptive transfer of CD115+ wild-type (WT) monocytes partially restored the susceptibility of RAG-2/β7-integrin double-deficient mice to DSS-induced colitis, thereby demonstrating the functional importance of β7-integrin-expressing monocytes for the development of DSS colitis. We also reveal that genetic ablation of MAdCAM-1 ameliorates experimental colitis in RAG-2-deficient mice as well. In summary, we demonstrate a previously unknown role of α4β7-integrin–MAdCAM-1 interactions as drivers of colitis by directing inflammatory monocytes into the colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.