Chronic abuse of methamphetamine leads to cognitive dysfunction and high rates of relapse, paralleled by significant changes of brain dopamine and serotonin neurotransmission. Previously, we found that rats with extended access to methamphetamine self-administration displayed enhanced methamphetamine-primed reinstatement of drug-seeking and cognitive deficits relative to limited access animals. The present study investigated whether extended access to methamphetamine self-administration produced abnormalities in dopamine and serotonin systems in rat forebrain. Rats self-administered methamphetamine (0.02-mg/i.v. infusion) during daily 1-h sessions for 7 to 10 days, followed by either short-(1-h) or longaccess (6-h) self-administration for 12 to 14 days. Lever responding was extinguished for 2 weeks before either reinstatement testing or rapid decapitation and tissue dissection. Tissue levels of monoamine transporters and markers of methamphetamine-induced toxicity were analyzed in several forebrain areas. Long-access methamphetamine self-administration resulted in escalation of daily drug intake (ϳ7 mg/kg/ day) and enhanced drug-primed reinstatement compared with the short-access group. Furthermore, long-, but not shortaccess to self-administered methamphetamine resulted in persistent decreases in dopamine transporter (DAT) protein levels in the prefrontal cortex and dorsal striatum. In contrast, only minor alterations in the tissue levels of dopamine or its metabolites were found, and no changes in markers specific for dopamine terminals or glial cell activation were detected. Our findings suggest that persistent methamphetamine seeking is associated with region-selective changes in DAT levels without accompanying monoaminergic neurotoxicity. Greater understanding of the neuroadaptations underlying persistent methamphetamine seeking and cognitive deficits could yield targets suitable for future therapeutic interventions.Methamphetamine (Meth) abuse in humans can quickly develop into a chronic relapsing disorder, accompanied by a wide range of neuropsychological deficits. For example, Meth addicts display impairments in memory functions, cognitive and psychomotor performance, as well as increased impulsivity and aggressive behavior (for reviews, see Nordahl et al., 2003;Scott et al., 2007). Human brain imaging studies provide evidence that these neuropsychological deficits are paralleled by significant changes in brain dopaminergic and serotonergic neurotransmitter systems, as well as altered general metabolic activity in basal ganglia and frontal cortices (for review, see Chang et al., 2007). In particular, chronic Meth abuse reduces the density of dopamine transporters (DAT) in the striatum and (to a lesser extent) in the frontal Article, publication date, and citation information can be found at
While the involvement of the medial prefrontal cortex projection to the nucleus accumbens in the reinstatement of cocaine seeking has been well studied, it is not known if this projection plays a similar role in the reinstatement of cue- and methamphetamine-induced drug seeking in animals extinguished from methamphetamine self-administration. Accordingly, following extinction from long access methamphetamine self-administration rats were bilaterally microinjected with either a combination of the GABA agonists baclofen/muscimol or aCSF vehicle into the infralimbic or prelimbic subcompartments of the medial prefrontal cortex or into the shell or core subcompartments of the nucleus accumbens. Similar to cocaine seeking, inactivation of either the prelimbic cortex or accumbens core eliminated cue- and methamphetamine-induced reinstatement, and inactivation of neither the infralimbic cortex nor shell subcompartments inhibited methamphetamine-induced drug seeking. However, in contrast to previous reports with cocaine, cue-induced reinstatement of methamphetamine seeking was inhibited by inactivation of the infralimbic cortex. In conclusion, while a primary role in reinstated drug seeking by the prelimbic and the accumbens core is similar between cocaine and methamphetamine, the recruitment of the infralimbic cortex by conditioned cues differs between the two psychostimulant drugs of abuse.
Adolescence is a phase of development during which many physiological and behavioral changes occur, including increased novelty seeking and risk taking. In humans, this is reflected in experimentation with drugs. Research demonstrates that drug use that begins during adolescence is more likely to lead to addiction than drug use that begins later in life. Despite this, relatively little is known of the effects of drugs in adolescence, and differences in response between adolescents and adults. PCP and ketamine are popular club drugs, both possessing rewarding properties that could lead to escalating use. Drug sensitization (or reverse tolerance), which refers to an increase in an effect of a drug following repeated use, has been linked with the development of drug cravings that is a hallmark of addiction. The current work investigated the acute response and the development of sensitization to PCP and ketamine in adolescent and adult rats. Periadolescent Sprague-Dawley rats (30 days or 38 days of age), and young adults (60 days of age) received PCP (6 mg/kg IP) or ketamine (20 mg/kg IP) once every three days, for a total of five drug injections. Adolescents and adults showed a stimulant response to the first injection of either drug, however the response was considerably greater in the youngest adolescents and lowest in the adults. With repeated administration, adults showed a robust escalation in activity that was indicative of the development of sensitization. Adolescents showed a flatter trajectory, with similar high levels of activity following an acute treatment and after five drug treatments. The results demonstrate important distinctions between adolescents and adults in the acute and repeated effects of PCP and ketamine.
The rate of acquisition of drug self-administration may serve as a predictor of later drug-taking behavior, possibly influencing the vulnerability to use drugs. The present study examined the effects of perinatal (gestation/lactation) lead exposure on adult rates of acquisition of intravenous cocaine self-administration using an automated procedure that included both Pavlovian and operant components. For Experiment 1, female rats were gavaged daily with 0 or 16 mg lead for 30 days prior to breeding with nonexposed males. Metal administration continued through pregnancy and lactation and was discontinued at weaning (postnatal day (PND) 21). Animals born to control or lead-exposed dams subsequently were tested daily as adults in a preparation where sessions included an initial 3-h autoshaping period followed by a 3-h self-administration period where 0.20 mg/kg cocaine was delivered contingently. During autoshaping, intravenous cocaine infusions were paired with the extension and retraction of a lever, while infusions occurred during selfadministration only when a lever press was executed (FR-1). The criterion for acquisition was a 2-day period during which a mean of 50 infusions/session occurred during self-administration. Animals were given 35 days to reach criterion. In Experiment 1, accelerated rates of acquisition of cocaine self-administration were evident for lead-exposed animals relative to controls. Overall, the number of selfadministered cocaine infusions per session was significantly higher for lead-exposed rats as compared to control rats. Experiment 2 replicated Experiment 1 except that a higher dose of cocaine (0.80 mg/kg) was employed as the reinforcer, and 30 infusions/session was the set criterion. At the higher cocaine dose (Experiment 2), acquisition rates for control and lead-exposed animals were not markedly different, and significantly different infusion rates were not observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.