Increasing commercial application of silver nanoparticles (Ag NP) and subsequent presence in wastewater and sewage sludge has raised concerns regarding their effects in the aquatic and terrestrial environment. Several studies have employed standardised acute and chronic earthworm-based tests to establish the toxicological effects of Ag NP within soil. These studies have relied heavily on the use of epigiec earthworm species which may have limited ecological relevance in mineral soil. This study assessed the influence of Ag NP (uncoated 80nm powder) and AgNO on survival, change in biomass and avoidance behaviour in a soil dwelling (endogiec) species, Allolobophora chlorotica. Earthworms were exposed for 14 days to soils spiked with Ag NP or AgNO at 0, 12.5, 25, 50 and 100mgkg either separately for survival and biomass measurement, or combined within a linear gradient to assess avoidance. Avoidance behaviour was shown to provide the most sensitive endpoint with an observable effect at an Ag NP/AgNO concentration of 12.5mgkg compared with 50mgkg for biomass change and 100mgkg for survival. Greater mortality was observed in AgNO (66.7%) compared with Ag NP-spiked soils (12.5%) at 100mgkg, attributed to increased presence of silver ions. Although comparison of results with studies employing Eisenia fetida and Eisenia andrei suggest that the A. chlorotica response to Ag NP is more sensitive, further research employing both epigeic and endogeic earthworms under similar experimental conditions is required to confirm this observation.
Soil dwelling earthworms are now adopted more widely in ecotoxicology, so it is vital to establish if standardised test parameters remain applicable. The main aim of this study was to determine the influence of OECD artificial soil on selected soil-dwelling, endogeic earthworm species. In an initial experiment, biomass change in mature Allolobophora chlorotica was recorded in Standard OECD Artificial Soil (AS) and also in Kettering Loam (KL). In a second experiment, avoidance behaviour was recorded in a linear gradient with varying proportions of AS and KL (100% AS, 75% AS + 25% KL, 50% KS + 50% KL, 25% AS + 75% KL, 100% KL) with either A. chlorotica or Octolasion cyaneum. Results showed a significant decrease in A. chlorotica biomass in AS relative to KL, and in the linear gradient, both earthworm species preferentially occupied sections containing higher proportions of KL over AS. Soil texture and specifically % composition and particle size of sand are proposed as key factors that influenced observed results. This research suggests that more suitable substrates are required for ecotoxicology tests with soil dwelling earthworms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.