This paper reviews the works related to the effect of soil compaction on cereal yield and focuses on research of field experiments. The reasons for compaction formation are usually a combination of several types of interactions. Therefore one of the most researched topics all over the world is the changes in the soil's physical and chemical properties to achieve sustainable cereal production conditions. Whether we are talking about soil bulk density, physical soil properties, water conductivity or electrical conductivity, or based on the results of measurements of on-line or point of soil sampling resistance testing, the fact is more and more information is at our disposal to find answers to the challenges.Thanks to precision plant production technologies (PA) these challenges can be overcome in a much more efficient way than earlier as instruments are available (geospatial technologies such as GIS, remote sensing, GPS with integrated sensors and steering systems; plant physiological models, such Decision Support System for Agrotechnology Transfer (DSSAT), which includes models for cereals etc.). The tests were carried out first of all on alteration clay and sand content in loam, sandy loam and silt loam soils. In the study we examined especially the change in natural soil compaction conditions and its effect on cereal yields.Both the literature and our own investigations have shown that the soil moisture content changes have the opposite effect in natural compaction in clay and sand content related to cereal yield. These skills would contribute to the spreading of environmental, sustainable fertilizing devoid of nitrate leaching planning and cereal yield prediction within the framework of the PA to eliminate seasonal effects.
In order to meet the requirements of sustainability and to determine yield drivers and limiting factors, it is now more likely that traditional yield modelling will be carried out using artificial intelligence (AI). The aim of this study was to predict maize yields using AI that uses spatio-temporal training data. The paper has advanced a new method of maize yield prediction, which is based on spatio-temporal data mining. To find the best solution, various models were used: counter-propagation artificial neural networks (CP-ANNs), XY-fused Querynetworks (XY-Fs), supervised Kohonen networks (SKNs), neural networks with Rectangular Linear Activations (ReLU), extreme gradient boosting (XGBoost), support-vector machine (SVM), and different subsets of the independent variables in five vegetation periods. Input variables for modelling included: soil parameters (pH, P2O5, K2O, Zn, clay content, ECa, draught force, Cone index), micro-relief averages, and meteorological parameters for the 63 treatment units in a 15.3 ha research field. The best performing method (XGBoost) reached 92.1% and 95.3% accuracy on the training and the test sets. Additionally, a novel method was introduced to treat individual units in a lattice system. The lattice-based smoothing performed an additional increase in Area under the curve (AUC) to 97.5% over the individual predictions of the XGBoost model. The models were developed using 48 different subsets of variables to determine which variables consistently contributed to prediction accuracy. By comparing the resulting models, it was shown that the best regression model was Extreme Gradient Boosting Trees, with 92.1% accuracy (on the training set). In addition, the method calculates the influence of the spatial distribution of site-specific soil fertility on maize grain yields. This paper provides a new method of spatio-temporal data analyses, taking the most important influencing factors on maize yields into account.
Predicting crop yields is one of the most challenging tasks in agriculture. It plays an essential role in decision making at global, regional, and field levels. Soil, meteorological, environmental, and crop parameters are used to predict crop yield. A wide variety of decision support models are used to extract significant crop features for prediction. In precision agriculture, monitoring (sensing technologies), management information systems, variable rate technologies, and responses to inter- and intravariability in cropping systems are all important. The benefits of precision agriculture involve increasing crop yield and crop quality, while reducing the environmental impact. Simulations of crop yield help to understand the cumulative effects of water and nutrient deficiencies, pests, diseases, and other field conditions during the growing season. Farm and in situ observations (Internet of Things databases from sensors) together with existing databases provide the opportunity to both predict yields using “simpler” statistical methods or decision support systems that are already used as an extension, and also enable the potential use of artificial intelligence. In contrast, big data databases created using precision management tools and data collection capabilities are able to handle many parameters indefinitely in time and space, i.e., they can be used for the analysis of meteorology, technology, and soils, including characterizing different plant species.
To better understand the potential of soils, understanding how soil properties vary over time and in-field is essential to optimize the cultivation and site-specific technologies in crop production. This article aimed at determining the within-field mapping of soil chemical and physical properties, vegetation index, and yield of maize in 2002, 2006, 2010, 2013, and 2017, respectively. The objectives of this five-year field study were: (i) to assess the spatial and temporal variability of attributes related to the maize yield; and (ii) to analyse the temporal stability of management zones. The experiment was carried out in a 15.3 ha research field in Hungary. The soil measurements included sand, silt, clay content (%), pH, phosphorous (P2O5), potassium (K2O), and zinc (Zn) in the topsoil (30 cm). The apparent soil electrical conductivity was measured in two layers (0–30 cm and 30–90 cm, mS/m) in 2010, in 2013, and in 2017. The soil properties and maize yields were evaluated in 62 management zones, covering the whole research area. The properties were characterized as the spatial-temporal variability of these parameters and crop yields. Classic statistics and geostatistics were used to analyze the results. The maize yields were significantly positively correlated (r = 0.62–0.73) with the apparent electrical conductivity (Veris_N3, Veris_N4) in 2013 and 2017, and with clay content (r = 0.56–0.81) in 2002, 2013, and 2017.
Soil moisture content directly influences yield. Mapping within field soil moisture content differences provides information for agricultural management practices.In this study we aimed to find a cost-effective method for mapping within field soil moisture content differences. Spatial coverage of the field sampling or TDR method is still not dense enough for site-specific soil management. Soil moisture content can be calculated by measuring the apparent soil electrical conductivity (Soil moisture map was also compared to yield map showing correlation (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.