The main objective of the manuscript is the structural analysis, magnetic investigation and antimicrobial activity of Mn1−xZnxFe2O4 with stoichiometry (x = 0, 0.25, 0.5, 0.75, and 1.0). The Mn-Zn nanoferrites were synthesized by self propagating high-temperature synthesis using a mixture of fuels. The synthesized Mn-Zn nanoferrites were characterized by X-ray diffraction (XRD) that confirms cubic crystal structure with lattice constant in the range 8.372-8.432Ao. It is observed that saturation magnetization (Ms), remanence magnetization (Mr) and magneton number (Mr/Ms) decreased gradually with the increasing of Zn2+ concentration. The decrease in the saturation magnetization may be explained as, the Zn2+ concentration increases, the relative number of ferric ions on the A sites diminishes and this reduces the A–B interaction. Further, the synthesized Mn-Zn nanoferrites were tested for antibacterial activities against two-gram positive strains (Staphylococcus aureus ATCC No–12598, Lactobacillus amylovorus ATCC No– 12598), gram-negative strains E.coli ATCC No – 25922, Pseudomonas- ATCC No- 25619) and one fungal strain (C.albicans -ATCC No – 2091).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.