The purpose of this investigation was to try to understand the antibacterial mechanism of L-(-)-usnic acid isolated for the first time from fruticose lichen Usnea subfloridana using clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of L-(-)-usnic acid against the clinical isolates of MRSA and reference strain S. aureus MTCC-96 (SA-96) was in the range 25-50 μg/ml. Treatment of both reference and clinical strains (MRSA-ST 2071) with four-fold MIC concentrations (100-200 μg/ml) of L-(-)-usnic acid reduced the viability of cells without damaging the cell wall. However, the loss of 260 nm absorbing material and increase in propidium iodide uptake was observed in both of the strains. Similarly, a combined effect of L-(-)-usnic acid (25-50 μg/ml) and 7.5 % NaCl resulted in a reduced number of viable cells within 24 h in comparison to the control. These observations clearly indicate that L-(-)-usnic acid exerts its action by disruption of the bacterial membrane. Further, in vivo efficacy showed that L-(-)-usnic acid significantly (p < 0.001) lowered the microbial load of spleen at doses ranging from 1 to 5 mg/kg. Further, toxicity studies in infected mice at doses 20 times higher than the efficacious dose indicated L-(-)usnic acid to be safe. Paradoxically, L-(-)usnic acid exhibited changes in serum triglycerides, alkaline phosphatase (ALKP) and liver organ weight in the healthy mice administered with only 25 mg/kg body weight. The results obtained in this study showed that natural L-(-)-usnic acid exerts its antibacterial activity against MRSA by disruption of the cell membrane. Further, the natural L-(-)-usnic acid was found to be safe up to 100 mg/kg body weight, thereby, making it a probable candidate for treating S. aureus infections.
Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of
Glycyrrhiza
glabra
were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68–100% at doses of 62.5–250mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.
The effects of a 90-day oral administration of water and alcohol extracts of dried calyx of Hibiscus sabdariffa were evaluated in albino rats. Haematological, biochemical and histopathological changes were monitored every 30 days.The death of the animals was preceded by a severe loss in weight, accompanied with diarrhoea in animals on the 2000 mg/kg dose. There was an increase in food intake (g) per kg body weight per day in the aqueous (A) and ethanol (E) 300 mg/kg extract groups. Significant reductions in the erythrocyte count with no difference in total leucocyte count were observed. The activity of aspartate aminotransferase (AST) was enhanced by the administration of aqueous and 50% ethanol extract with a significant increase in its level at higher doses (p < 0.05). Alanine aminotransferase (ALT) and creatinine levels were significantly affected by all the extracts at the different dose levels. However, aqueous extracts exhibited a significant increase in creatinine levels (p < 0.05) at higher doses. The cholesterol levels were generally not significantly affected by the extracts. No significant histopathological changes were observed, although there was a significant reduction in the weight of the spleen of the animals administered with ethanol and water extracts when compared with the control (p < 0.01). Other organs were of the same relative weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.