This study aimed to produce sourdough bread using an encapsulated kombucha sourdough starter culture without the addition of baker's yeast. The bioactive metabolites of kombucha sourdough starter and sourdough starter without kombucha were identified using 1H‐NMR analysis with multivariate analysis. The physical properties, including loaf volume, specific loaf volume, firmness, and water activity were determined following standard methods. The shelf life and consumer acceptability of the bread were also being evaluated. The principal component analyses showed the presence of 15 metabolites in kombucha sourdough starter. The major compounds that contributed to the differences from sourdough starter without kombucha were alpha‐aminobutyric acid, alanine, acetic acid, riboflavin, pyridoxine, anserine, tryptophan, gluconic acid, and trehalose. The encapsulated kombucha sourdough starter increased the loaf volume (976.7 ± 25.2 mL) and specific loaf volume (4.38 ± 0.12 mL/g) compared to yeast bread. Thus, significant (P < 0.05) reduction was observed in the crumb firmness (116.07 ± 6.28 g) compared to traditional sourdough bread and yeast bread. The encapsulated kombucha sourdough starter extended the shelf life of bread by 5 to 10 days at room temperature. The sourdough bread prepared using the encapsulated kombucha sourdough starter demonstrated significantly (P < 0.05) higher taste and overall acceptability scores compared to the other bread. The findings indicate that the encapsulated kombucha sourdough starter is promising to produce functional sourdough bread with extended shelf life and improved quality.
Practical Application
Encapsulated kombucha sourdough starter culture that appropriately refreshed can be used primarily as a dough leavening agent in the bread industry without the addition of baker's yeast. This starter culture applied in sourdough bread production extended the shelf life and improved the biological function of sourdough bread.
The aim of this study was to identify the bioactive compound and evaluate the antibacterial activity of torch ginger flower oil extracted using subcritical carbon dioxide. The antibacterial activity was evaluated in agar diffusion assay, while MIC and MBC were determined using the microdilution broth assay. The essential oil was subjected to metabolomics profiling using GC-MS and 1H-NMR techniques. The results demonstrated strong antibacterial activity towards Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The MIC values were 0.0625, 0.25, and 0.25 mg/mL, and the MBC values were 0.25, 0.5, and 1 mg/mL towards S. typhimurium, S. aureus, and E. coli, respectively. A total of 33 compounds were identified using GC-MS including 15 compounds (45%) known for their antimicrobial activity. In addition, sixteen metabolites were identified using NMR analysis and 8 out of the sixteen metabolites (50%) have antibacterial activity. The extracted oil demonstrated broad range for antibacterial activity and has high potential for applications in pharmaceutical and food industries. Practical Applications. The oil extracted from the torch ginger flower was found very stable and has promising applications as antibacterial agent for food and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.