A large area and highly stable perovskite solar module (10 cm × 10 cm, active area ∼70 cm2) is demonstrated using low cost processing methods and materials.
Hybrid perovskites are recently developed photoactive semiconductors that hold great promise for next-generation solar cells, with devices incorporating them reaching certified efficiencies as high as 22.1%. [1] This high performance is coupled with a relative low cost, as perovskites comprise earth-abundant elements that are amenable to deposition from the solution-state by scalable, inexpensive printing processes. [2] Recent work has focused on improving their long-term stability with significant progress being reported in encapsulation techniques and scalability with the production of modulescale devices (100 cm 2 ) exhibiting efficiencies of over 11%. [3][4][5][6] These developments have resulted in efforts to commercialize perovskite solar cells; however, there is still concern over the potential to achieve the 25-year service lifetimes necessary to make perovskites a disruptive technology.Photoactive perovskite semiconductors are highly tunable, with numerous inorganic and organic cations readily incorporated to modify optoelectronic properties. However, despite the importance of device reliability and long service lifetimes, the effects of various cations on the mechanical properties of perovskites are largely overlooked. In this study, the cohesion energy of perovskites containing various cation combinations of methylammonium, formamidinium, cesium, butylammonium, and 5-aminovaleric acid is reported. A trade-off is observed between the mechanical integrity and the efficiency of perovskite devices. High efficiency devices exhibit decreased cohesion, which is attributed to reduced grain sizes with the inclusion of additional cations and PbI 2 additives. Microindentation hardness testing is performed to estimate the fracture toughness of single-crystal perovskite, and the results indicated perovskites are inherently fragile, even in the absence of grain boundaries and defects. The devices found to have the highest fracture energies are perovskites infiltrated into a porous TiO 2 /ZrO 2 /C triple layer, which provide extrinsic reinforcement and shielding for enhanced mechanical and chemical stability. Perovskite Solar CellsThe ORCID identification number(s) for the author(s) of this article can be found under https://doi.
Carbon based perovskite solar cells (PSCs) are fabricated through easily scalable screen printing techniques, using abundant and cheap carbon to replace the hole transport material (HTM) and the gold electrode further reduces costs, and carbon acts as a moisture repellent that helps in maintaining the stability of the underlying perovskite active layer. An inorganic interlayer of spinel cobaltite oxides (CoO) can greatly enhance the carbon based PSC performance by suppressing charge recombination and extracting holes efficiently. The main focus of this research work is to investigate the effectiveness of CoO spinel oxide as the hole transporting interlayer for carbon based perovskite solar cells (PSCs). In these types of PSCs, the power conversion efficiency (PCE) is restricted by the charge carrier transport and recombination processes at the carbon-perovskite interface. The spinel CoO nanoparticles are synthesized using the chemical precipitation method, and characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and UV-Vis spectroscopy. A screen printed thin layer of p-type inorganic spinel CoO in carbon PSCs provides a better-energy level matching, superior efficiency, and stability. Compared to standard carbon PSCs (PCE of 11.25%) an improved PCE of 13.27% with long-term stability, up to 2500 hours under ambient conditions, is achieved. Finally, the fabrication of a monolithic perovskite module is demonstrated, having an active area of 70 cm and showing a power conversion efficiency of >11% with virtually no hysteresis. This indicates that CoO is a promising interlayer for efficient and stable large area carbon PSCs.
A fully printable, hole‐conductor‐free perovskite solar cell with a simple and low‐cost fabrication route and high stability is well placed for commercialization. We aim to simplify the fabrication process of these solar cells by replacing the mesoporous TiO2 (meso‐TiO2) layer with a thick ZrO2 layer. This new architecture required only three steps: screen‐printing first the compact TiO2 (c‐TiO2), second the mesoporous ZrO2 layer (for perovskite infiltration), and third the carbon electrode. To improve the solar cell performance of the architecture, the c‐TiO2 and ZrO2 printing process are optimized. After systematic optimization of these processes, we found that the double‐printing of the c‐TiO2 layer and an increase of the ZrO2 later thickness from 1.4 to 2.1 μm in the device structure gives an optimized efficiency of 9.69 %, which is comparable to that of standard carbon devices with meso‐TiO2. This method provides an approach to reduce the fabrication time and thermal budget for fully printable solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.