Aims/hypothesis Autoantibodies to pancreatic beta cell proteins are markers of asymptomatic type 1 diabetes. The aim was to determine whether autoantibodies to the beta cell protein tetraspanin 7 would improve the ability to identify autoimmunity against pancreatic beta cells. Methods Full length and external domain fragments of tetraspanin 7 were expressed as luciferase-tagged fusion proteins and used in immunoprecipitation assays to measure autoantibodies in samples from 363 patients with type 1 diabetes at onset of disease, 503 beta cell autoantibody negative firstdegree relatives of patients, and 212 relatives with autoantibodies to insulin, glutamic acid decarboxylase, insulinoma antigen 2 or zinc transporter 8. Results Antibody binding was observed against the full length and external domains of tetraspanin 7, and was strongest against the full length protein. Autoantibodies that could be inhibited by untagged tetraspanin 7 were detected in 5 (1%) of 503 autoantibody negative relatives, 3 (3.2%) of 94 autoantibody negative patients, 95 (35.3%) of 269 autoantibody positive patients, 1 (1%) of 98 single autoantibody positive relatives and 25 (21.9%) of 114 multiple autoantibody positive relatives. Progression to diabetes did not differ between multiple autoantibody positive relatives with and without tetraspanin 7 autoantibodies. Conclusions/interpretation Tetraspanin 7 is an autoantigen in type 1 diabetes. Tetraspanin 7 autoantibodies are a marker of type 1 diabetes, but provide minor additional value to existing autoantibodies in identifying beta cell autoimmunity.
CD8+ T cells directed against beta cell autoantigens are considered relevant for the pathogenesis of type 1 diabetes. Using single cell T cell receptor sequencing of CD8+ T cells specific for the IGRP265-273 epitope, we examined whether there was expansion of clonotypes and sharing of T cell receptor chains in autoreactive CD8+ T cell repertoires. HLA-A*0201 positive type 1 diabetes patients (n = 19) and controls (n = 18) were analysed. TCR α- and β-chain sequences of 418 patient-derived IGRP265-273-multimer+ CD8+ T cells representing 48 clonotypes were obtained. Expanded populations of IGRP265-273-specific CD8+ T cells with dominant clonotypes that had TCR α-chains shared across patients were observed. The SGGSNYKLTF motif corresponding to TRAJ53 was contained in 384 (91.9%) cells, and in 20 (41.7%) patient-derived clonotypes. TRAJ53 together with TRAV29/DV5 was found in 15 (31.3%) clonotypes. Using next generation TCR α-chain sequencing, we found enrichment of one of these TCR α-chains in the memory CD8+ T cells of patients as compared to healthy controls. CD8+ T cell clones bearing the enriched motifs mediated antigen-specific target cell lysis. We provide the first evidence for restriction of T cell receptor motifs in the alpha chain of human CD8+ T cells with specificity to a beta cell antigen.
The role of diet in type 1 diabetes development is poorly understood. Metabolites, which reflect dietary response, may help elucidate this role. We explored metabolomics and lipidomics differences between 352 cases of islet autoimmunity (IA) and controls in the TEDDY (The Environmental Determinants of Diabetes in the Young) study. We created dietary patterns reflecting pre-IA metabolite differences between groups and examined their association with IA. Secondary outcomes included IA cases positive for multiple autoantibodies (mAb+). The association of 853 plasma metabolites with outcomes was tested at seroconversion to IA, just prior to seroconversion, and during infancy. Key compounds in enriched metabolite sets were used to create dietary patterns reflecting metabolite composition, which were then tested for association with outcomes in the nested case-control subset and the full TEDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy were inversely associated with mAb+ risk, while dicarboxylic acids were associated with an increased risk. An infancy dietary pattern representing higher levels of unsaturated phosphatidylcholines and phospholipid ethers, and lower sphingomyelins was protective for mAb+ in the nested case-control study only. Characterization of this high-risk infant metabolomics profile may help shape the future of early diagnosis or prevention efforts.
The phenotype of autoreactive T cells in type 1 diabetes is described as Th1, Th17 and/or Th21, but is largely uncharacterized. We combined multi-parameter cytokine profiling and proliferation, and identified GM-CSF producing cells as a component of the response to beta cell autoantigens proinsulin and GAD65. Overall cytokine profiles of CD4 T cell were not altered in type 1 diabetes. In contrast, patients with recent onset type 1 diabetes had increased frequencies of proinsulin-responsive CD4CD45RA T cells producing GM-CSF (p=0.002), IFNγ (p=0.004), IL-17A (p=0.008), IL-21 (p=0.011), and IL-22 (p=0.007), and GAD65-responsive CD4CD45RA T cells producing IL-21 (p=0.039). CD4 T cells with a GM-CSFIFNγIL-17AIL-21IL-22 phenotype were increased in patients for responses to both proinsulin (p=0.006) and GAD65 (p=0.037). GM-CSF producing T cells are a novel phenotype in the repertoire of T helper cells in type 1 diabetes and consolidate a Th1/Th17 pro-inflammatory pathogenesis in the disease.
Autoimmunity against pancreatic β-cell autoantigens is a characteristic of childhood type 1 diabetes. Autoimmunity usually appears in genetically susceptible children with the development of autoantibodies against (pro)insulin in early childhood. The offspring of mothers with type 1 diabetes are protected from this process. The aim of this study was to determine whether the protection conferred by maternal type 1 diabetes is associated with improved neonatal tolerance against (pro)insulin. Consistent with improved neonatal tolerance, the offspring of mothers with type 1 diabetes had reduced cord blood CD4 + T cell responses to proinsulin and insulin, a reduction in the inflammatory profile of their proinsulinresponsive CD4 + T cells, and improved regulation of CD4 + T cell responses to proinsulin at 9 months of age, as compared with offspring with a father or sibling with type 1 diabetes.Maternal type 1 diabetes was also associated with a modest reduction in CpG methylation of the INS gene in cord blood mononuclear cells from offspring with a susceptible INS genotype.Our findings support the concept that a maternal type 1 diabetes environment improves neonatal immune tolerance against the autoantigen (pro)insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.