The datasets of this article present the experimental parameters resulting from the assessment of sex reversal (SR) as a biomarker of endocrine disrupting effect of graphene oxide (GO), together with the histopathological assessment of ovary, testis, liver and kidneys of medaka larvae. These data sets support the published article “Sex-reversal and histopathological assessment of potential endocrine-disrupting effect of graphene oxide on Japanese medaka ( Oryzias larvae ) larvae.” The experiments were conducted on one day-post hatch (dph) Japanese medaka fries (orange-red variety) exposed to different concentrations of GO (2.5–20 mg/L) by immersion in embryo-rearing medium (ERM) for 96 h under laboratory conditions (25 ± 1 °C; light cycle 16 h light: 8 h dark). No food was given during the GO-exposure period. Controls (no GO) were identically maintained in ERM. After treatment, the larvae were maintained in balanced salt solution (BSS) with feeding and allowed to grow for 6 more weeks in a GO-free environment. On 47 dph, the larvae were anesthetized in MS-222, and the total length (mm) and body weight (mg) were recorded. For histopathological and phenotypic sex assessments, after sacrifice, the body excluding post-anal tail was preserved in 4% paraformaldehyde containing 0.05% Tween 20; ovary, testis, liver and kidneys were evaluated in 5 µm thick sections stained on haematoxylin eosin (HE) following OECD guidelines. The photomicrographs of sections were made using either an Olympus B-max 40 microscope attached to a camera with Q-capture Pro 7 software or an Olympus CKX53 inverted microscope with DP22 camera and CellSens software. A minimum 3 images of gonads in different regions were further analysed by imagej software and used for counting spermatogonia (SPG) and spermatocytes (SPT) in testis as well as perinucleolar (PNO) and cortical alveolar (CAO) oocytes in ovary. Data were expressed as number of SPG or SPT/mm 2 testis and % CAO or PNO in an ovary. Preserved tail in TRI reagent was used for genomic DNA extraction and the genetic sex was assessed by genotyping Y chromosome-specific male sex-determining gene dmy . Two different sets of buffers and primers were used and the reactions were conducted in a thermal cycler. The amplified products were separated in 2% agarose gel containing 0.01% ethidium bromide. The gels were viewed on an UV illuminator and the genotypes were identified by visual inspection. The first primer set amplified a 355 bp product for XY genotypes and no amplification for XX. The second set of primers amplified two products; one at 1249 bp and another at 986 bp for XY, and one product at 1249 bp for XX. Experimental data were expressed as means ± SD or SEM, analysed either by one-way analysis of variance (ANOVA) followed by post-hoc Tukey's multiple comparison test or unpaired parametric ‘ t ’ test including Welch's correction, if distributed normally (lengths and weights), or by Kruskal-Walli...
This article presents the experimental datasets obtained from the histological/histochemical studies of endocrine disrupting effects of graphene oxide (GO) on thyroid follicles and gas gland (GG) cells of Japanese medaka larvae at the onset of maturity. The experiment was conducted on one day-post hatch (dph) starved fries (orange-red variety) immersed in different concentrations of GO (2.5-20.0 mg/L) and no GO (controls) in embryo-rearing medium (ERM) for 96 h under laboratory conditions (25 ± 1 °C; light cycle 16 h light: 8 h dark). After treatment, larvae were maintained in balanced salt solution (BSS) with food and allowed depuration for 6 more weeks in a GO-free environment. On 47 dph, the larvae were anesthetized in MS 222 and their total lengths (mm) and weights (mg) were measured, and they were then cut into three small pieces (head, trunk, and tail). Head and trunk regions were fixed in 4% PFA in 20 mM PBS for 48 h at room temperature and the post-anal tail was preserved in TRI reagent and kept at −20 °C until analysis. Tissues in 4% PFA were used for cutting 5µm thick paraffin sections in a manual rotary microtome. Sections of head regions were evaluated for thyroid follicles after hematoxylin-eosin (HE) or Periodic acid-Schiff (PAS) staining. Trunk sections were used for swim bladder (SB) inflation studies and for phenotypic sex (ovary and testis) of the larvae after HE staining. Genetic sex assessment was made from tail DNA by genotyping Y chromosome-specific male sex-determining gene dmy . Digital images were captured by using either an Olympus B-max 40 microscope attached to a camera with Q-capture Pro 7 software or an Olympus CKX53 microscope with DP22 camera and CellSens software. Images of thyroid follicles and GG cells were analyzed using imagej software. HE stained histological sections of thyroid follicles near the heart and branchial regions were captured and the area (µm 2 ) of individual follicles (minimum 3) available in the entire section were measured. The heights of thyrocytes (µm) were determined directly. Manual counting of GG cells was made from the digital images captured in several regions of the SB avoiding blood cells and other cells which have indistinct nucleus and pale cytoplasm; results were expressed as the number of GG cells/mm 2 . Data were analyzed by GraphPad prism version 7.04. For normally distributed data, one-way ANOVA followed by post-hoc Tukey's test or unpaired parametric “t” test including Welch's correction was used. Otherwise, Kruskal-Wallis test followed by nonparametric Mann-Whitney's test as a post hoc test was used. Data were expressed as means ±SEM and the level of significance was set at p < 0.05.
The pathogenesis of asthma is multifactorial and not completely understood; however, it is considered a chronic inflammatory disease that affects the airways and has a clinical development of wheezing, shortness of breath, chest tightness, and cough. The prevalence of asthma has increased drastically during the past few decades. Urban air pollution from industrial emissions has been implicated as one of the major factors responsible for this increase. The objective of this paper was to analyze the impact of sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide (CO2) on the overall prevalence of asthma for adults and children. The statistical analysis was conducted using SAS statistical software to determine multiple comparison tests for asthma prevalence among years, ages, ethnicities, and gender, and emissions of SO2, NOx, and CO2 among regions and years. Moreover, SAS was utilized to estimate fully parametric regression models for emission density on total asthma prevalence, child asthma, and adult asthma. In our investigation of asthma prevalence, blacks, females, and children were found to have the highest incidence of asthma. Industrial emissions of SO2, NOx, and CO2 were analyzed, and CO2 had the largest emissions, followed by SO2, and lastly NOx. NOx had the highest correlation with asthma prevalence in child and adult asthma; however, when the influence of SO2, NOx, and CO2 on the overall asthma rate was investigated, CO2 showed the highest correlation. Furthermore, children exposed to SO2, NOx, and CO2 were found to have an increased risk of asthma when compared to adults. This adds to evidence that outdoor air pollution is associated with asthma and that more needs to be done to decrease industrial air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.