BioMNY proteins are considered to constitute tripartite biotin transporters in prokaryotes. Recent comparative genomic and experimental analyses pointed to the similarity of BioMN to homologous modules of prokaryotic transporters mediating uptake of metals, amino acids, and vitamins. These systems resemble ATP-binding cassette-containing transporters and include typical ATPases (e.g., BioM). Absence of extracytoplasmic solute-binding proteins among the members of this group, however, is a distinctive feature. Genome context analyses uncovered that only onethird of the widespread bioY genes are linked to bioMN. Many bioY genes are located at loci encoding biotin biosynthesis, and others are unlinked to biotin metabolic or transport genes. Heterologous expression of the bioMNY operon and of the single bioY of the ␣-proteobacterium Rhodobacter capsulatus conferred biotin-transport activity on recombinant Escherichia coli cells. Kinetic analyses identified BioY as a high-capacity transporter that was converted into a high-affinity system in the presence of BioMN. BioMNY- Biotin is synthesized by many bacteria, certain archaea, fungi, and plants (reviewed in ref. 2). Several metabolic routes seem to exist for the synthesis of the intermediate pimeloyl-CoA, which then is converted into biotin in a four-step path encoded by the universal genes bioF, bioA, bioD, and bioB (3, 4). In plants, the pathway is distributed between the cytosol and the mitochondria. At least the final step, catalyzed by biotin synthase, occurs in mitochondria. This enzyme, a member of the radical SAM enzyme family, inserts a sulfur atom into dethiobiotin in a complex reaction that is linked to mitochondrial iron/sulfur metabolism (2).Biotin uptake has been analyzed in eukaryotes. In mammalian cells, the vitamin is transported across the plasma membrane by a sodium-dependent multivitamin transporter and, at least in certain tissues, by monocarboxylate transporter 1 (1). In the naturally biotin-auxotrophic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, biotin uptake is mediated by unrelated proton symporters (5). Surprisingly little is known on the mechanisms behind biotin transport into prokaryotic cells, and multiple systems seem to exist. Active transport was observed for Escherichia coli K-12 Ͼ30 years ago (6). Despite extensive experimental work, knowledge of the complete genome sequence, and assignment of the biotin-transport locus to the 75-min genomic region, the gene(s) for the biotin transporter has not yet been identified. Recent studies by Walker and Altman (7) suggest that this system in E. coli and related Gram-negative bacteria not only transports the small vitamin, but in addition facilitates the uptake of biotinylated peptides with chain lengths up to 31 amino acid residues.In 2002, Entcheva et al. (8) reported that mutations in bioM and bioN lead to reduced biotin uptake in Sinorhizobium meliloti. Because the products of these two genes share distinct similarity with CbiO and CbiQ, which are components of prokary...
Energy-coupling factor (ECF) transporters are a recently discovered novel class of importers of micronutrients in prokaryotes (9,12,13,20). They are composed of a conserved energy-coupling module consisting of a transmembrane protein (T component) and pairs of ATP-binding cassette-containing proteins (A proteins), as well as an S unit (S component) through which substrate specificity is conveyed. S components represent a group of highly diverse small integral membrane proteins with predicted or experimentally established individual specificity for transition metal ions, B vitamins or their precursors, biotin, lipoate, and intermediates of salvage pathways. A link between substrate specificity and S components has been experimentally demonstrated in the case of CbiMN (Co 2ϩ ) and NikMN (Ni 2ϩ ) (13), RibU (riboflavin) (4, 6, 19), BioY (biotin) (9), FolT (folate) (8, 12), and ThiT (thiamine) (8,12,14). Based on utilization of a dedicated or shared AAT module, ECF transporters fall into two subclasses. Members of subclass I are encoded by operons containing one or two ABC ATPase genes, a T-component gene, and an S-component gene (12). RcBioMNY, the biotin transporter of Rhodobacter capsulatus, is the prototype of these systems. Previous work has established that the solitary BioY (S component) can function as a low-affinity transporter. It is converted into a high-affinity system in the presence of the AAT module BioMN (9). Notably, the majority of ECF transporters belong to subclass II. These promiscuous systems are widespread in the Firmicutes and also occur in members of the Thermotogales lineage and in archaea (12). In general, the cells contain a single ecfA1A2T operon and a number of genes for S units that are scattered around the genome. Cooccurrence of subclass I and subclass II ECF transporters is found in archaeal and bacterial species. The bioinformatic prediction for subclass II systems suggesting that several diverse S components interact with the same EcfA1A2T module has recently been confirmed experimentally for folate, riboflavin, and thiamine transporters of Bacillus subtilis, Lactobacillus casei, and Leuconostoc mesenteroides and for the hypothetical pantothenate transporter of L. mesenteroides (12).The modular composition of ECF transporters poses questions about their oligomeric structure, the specificity of subunit recognition, and the intersubunit signaling that couples substrate uptake to ATP hydrolysis by the ABC ATPase domains. These issues are essentially unsolved for any ECF transporter.In the present study, we confirm the predicted role of L. mesenteroides PanT (LmPanT) as a pantothenate-specific S component that functionally interacts with the LmEcfA1A2T module. The main focus is on the role of the T components, which are the least-characterized proteins of ECF importers. T proteins have moderately similar primary structures. Two 3-amino-acid signatures with Ala-Arg-Gly as the consensus sequence in the C-terminal part are the most conserved feature in the T units. Using RcBioMNY as a me...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.