Although the function of the circulating immune cell compartment has been studied in detail for decades, limitations in terms of access and cell yields from peripheral tissues have restricted our understanding of tissue-based immunity, particularly in humans. Recent advances in high-throughput protein analyses, transcriptional profiling, and epigenetics have partially overcome these obstacles. Innate lymphoid cells (ILCs) are predominantly tissue-resident, and accumulating data indicate that they have significant tissue-specific functions. We summarize current knowledge of ILC phenotypes in various tissues in mice and humans, aiming to clarify ILC immunity in distinct anatomical locations.
Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45HLA-DRCD14CD64) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11cCCR2CX3CR1 cells, a phenotype also shared by circulating CD14 monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11cCCR2CX3CR1 phenotype. CD11c monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c Mϕ-like cells produced IL-10. CD11c pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14 monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11cCCR2CX3CR1) into tolerogenic tissue-resident (CD11cCCR2CX3CR1) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11c monocyte-like cells.
Background & AimsAn increase in CD3+TCRγδ+ and a decrease in CD3− intraepithelial lymphocytes (IEL) is a characteristic flow cytometric pattern of celiac disease (CD) with atrophy. The aim was to evaluate the usefulness of both CD IEL cytometric pattern and anti-TG2 IgA subepithelial deposit analysis (CD IF pattern) for diagnosing lymphocytic enteritis due to CD.MethodsTwo-hundred and five patients (144 females) who underwent duodenal biopsy for clinical suspicion of CD and positive celiac genetics were prospectively included. Fifty had villous atrophy, 70 lymphocytic enteritis, and 85 normal histology. Eight patients with non-celiac atrophy and 15 with lymphocytic enteritis secondary to Helicobacter pylori acted as control group. Duodenal biopsies were obtained to assess both CD IEL flow cytometric (complete or incomplete) and IF patterns.ResultsSensitivity of IF, and complete and incomplete cytometric patterns for CD diagnosis in patients with positive serology (Marsh 1+3) was 92%, 85 and 97% respectively, but only the complete cytometric pattern had 100% specificity. Twelve seropositive and 8 seronegative Marsh 1 patients had a CD diagnosis at inclusion or after gluten free-diet, respectively. CD cytometric pattern showed a better diagnostic performance than both IF pattern and serology for CD diagnosis in lymphocytic enteritis at baseline (95% vs 60% vs 60%, p = 0.039).ConclusionsAnalysis of the IEL flow cytometric pattern is a fast, accurate method for identifying CD in the initial diagnostic biopsy of patients presenting with lymphocytic enteritis, even in seronegative patients, and seems to be better than anti-TG2 intestinal deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.