Mucus form H. aspersa muller has been reported to have several therapeutic proprieties, such as antimicrobial activity, skin protection and wound repair. In this study, we have analyzed H. aspersa mucus (Helixcomplex) bio-adhesive efficacy and its defensive properties against the ozone (O 3) (0.5 ppm for 2 hours) exposure in human keratinocytes and reconstructed human epidermis models. Cytotoxicity, tissue morphology and cytokine levels were determined. We confirmed HelixComplex regenerative and bio-adhesive properties, the latter possibly via the characteristic mucopolysaccharide composition. In addition, Helix-Complex was able to protect from O 3 exposure by preventing oxidative damage and the consequent pro-inflammatory response in both 2D and 3D models. Based on this study, it is possible to suggest HelixComplex as a potentially new protective technology against pollution induced skin damage.
Late onset Alzheimer disease (LOAD) is traditionally considered as a separate disease from vascular dementia (VAD). However, growing evidence suggests that β-amyloid (Aβ) accumulation, that initiates LOAD-related neurodegeneration, is preceded by vascular events. Previous in vitro studies showed that β-secretase 1 (BACE1), the key-enzyme of amyloidogenesis, is upregulated by cerebrovascular insult; moreover, its activity is increased both in brain and serum of LOAD patients. We aimed to investigate whether BACE1 serum activity is altered also in dementias related, or not, to cerebrovascular disease. Thus, we evaluated serum BACE1 activity in a sample of individuals, including patients with LOAD (n. 175), VAD (n. 40), MIXED (LOAD/VAD) dementia (n. 123), other types of dementia (n. 56), and healthy Controls (n. 204). We found that BACE1 was significantly higher not only in LOAD (+ 30%), but also in VAD (+ 35%) and MIXED dementia (+ 22%) (p < 0.001 for all), but not in the other types of dementia (+ 10%). Diagnostic accuracy was 77% for LOAD, 83% for VAD, and 77% for MIXED dementia. In conclusion, we showed for the first time that the increase in peripheral BACE1 activity is a common feature of LOAD and VAD, thus underlying a further pathogenic link between these two forms of dementia.
Circadian rhythms are biological oscillations that occur with an approximately 24 h period and optimize cellular homeostasis and responses to environmental stimuli. A growing collection of data suggests that chronic circadian disruption caused by novel lifestyle risk factors such as shift work, travel across time zones, or irregular sleep-wake cycles has long-term consequences for human health. Among the multiplicity of physiological systems hypothesized to have a role in the onset of pathologies in case of circadian disruption, there are redox-sensitive defensive pathways and inflammatory machinery. Due to its location and barrier physiological role, the skin is a prototypical tissue to study the influence of environmental insults induced OxInflammation disturbance and circadian system alteration. To better investigate the link among outdoor stressors, OxInflammation, and circadian system, we tested the differential responses of keratinocytes clock synchronized or desynchronized, in an in vitro inflammatory model exposed to O 3 . Being both NRF2 and NF-κB two key redox-sensitive transcription factors involved in cellular redox homeostasis and inflammation, we analyzed their activation and expression in challenged keratinocytes by O 3 . Our results suggest that a synchronized circadian clock not only facilitates the protective role of NRF2 in terms of a faster and more efficient defensive response against environmental insults but also moderates the cellular damage resulting from a condition of chronic inflammation. Our results bring new insights on the role of circadian clock in regulating the redoxinflammatory crosstalk influenced by O 3 and possibly can be extrapolated to other pollutants able to affect the oxinflammatory cellular processes.
Cigarette smoke (CS) alters cutaneous biological processes such as redox homeostasis and inflammation response that might be involved in promoting skin inflammatory conditions. Exposure to CS has also been linked to a destabilization of the NLRP3 inflammasome in pollution target tissues such as the lung epithelium, resulting in a more vulnerable immunological response to several exogenous and endogenous stimuli related to oxidative stress. Thus, CS has an adverse effect on host defense, increasing the susceptibility to develop lung infections and pathologies. In the skin, another direct target of pollution, inflammasome disorders have been linked to an increasing number of diseases such as melanoma, psoriasis, vitiligo, atopic dermatitis, and acne, all conditions that have been connected directly or indirectly to pollution exposure. The inflammasome machinery is an important innate immune sensor in human keratinocytes. However, the role of CS in the NLRP1 and NLRP3 inflammasome in the cutaneous barrier has still not been investigated. In the present study, we were able to determine in keratinocytes exposed to CS an increased oxidative damage evaluated by 4-HNE protein adduct and carbonyl formation. Of note is that, while CS inhibited NLRP3 activation, it was able to activate NLRP1, leading to an increased secretion of the proinflammatory cytokines IL-1β and IL-18. This study highlights the importance of the inflammasome machinery in CS that more in general, in pollution, affects cutaneous tissues and the important cross-talk between different members of the NLRP inflammasome family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.