The Wiener model is a block oriented model, having a linear dynamic system followed by a static nonlinearity. The dominating approach to estimate the components of this model has been to minimize the error between the simulated and the measured outputs. We show that this will, in general, lead to biased estimates if there are other disturbances present than measurement noise. The implications of Bussgang's theorem in this context are also discussed. For the case with general disturbances, we derive the Maximum Likelihood method and show how it can be efficiently implemented. Comparisons between this new algorithm and the traditional approach, confirm that the new method is unbiased and also has superior accuracy
The Wiener model is a block oriented model having a linear dynamic system followed by a static nonlinearity. The dominating approach to estimate the components of this model has been to minimize the error between the simulated and the measured outputs. We show that this will in general lead to biased estimates if there is other disturbances present than measurement noise. The implications of Bussgang's theorem in this context are also discussed. For the case with general disturbances we derive the Maximum Likelihood method and show how it can be eciently implemented. Comparisons between this new algorithm and the traditional approach conrm that the new method is unbiased and also has superior accuracy.
Abstract:The Wiener model is a block oriented model having a linear dynamic system followed by a static nonlinearity. The dominating approach to estimate the components of this model has been to minimize the error between the simulated and the measured outputs. We show that this will in general lead to biased estimates if there is other disturbances present than measurement noise. The implications of Bussgang's theorem in this context are also discussed. For the case with general disturbances we derive the Maximum Likelihood method and show how it can be efficiently implemented. Comparisons between this new algorithm and the traditional approach confirm that the new method is unbiased and also has superior accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.