Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3 a Δ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.
To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4⌬ gpr5⌬ mutant, which has minimal titan cell production in vivo. The gpr4⌬ gpr5⌬ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4⌬ gpr5⌬ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression.
Serologic evaluation for Zika virus (ZIKV) infection currently includes an initial screen using an anti-ZIKV IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) followed by supplemental testing of specimens with nonnegative results by a plaque reduction neutralization test (PRNT). We compared the performance characteristics of three ELISAs for the detection of IgM class antibodies to ZIKV, including the Centers for Disease Control and Prevention (CDC) Zika MAC-ELISA, the InBios ZIKV Detect MAC-ELISA, and the Euroimmun anti-Zika Virus IgM ELISA. Additionally, we present our initial experiences with ZIKV serologic testing from a national reference laboratory perspective. Using both retrospectively and prospectively collected specimens from patients with possible ZIKV infection, we show that the CDC and InBios MAC-ELISAs perform comparably to each other, with positive agreement, negative agreement, and interrater kappa values ranging from 87.5% to 93.1%, 95.7% to 98.5%, and 0.52 to 0.83, respectively. In contrast, comparison of the Euroimmun ZIKV ELISA to either the CDC or InBios MAC-ELISAs resulted in positive agreement, negative agreement, and interrater kappa values ranging from 17.9% to 42.9%, 91.7% to 98.6%, and 0.10 to 0.39, respectively. Among the 19 prospective samples submitted for PRNT, nine were negative, eight specimens had neutralizing antibodies to a flavivirus (unable to be identified), and one sample each was confirmed for ZIKV or dengue virus infection. This study highlights the ongoing challenges associated with serologic diagnosis of ZIKV infection. Although the availability of a commercial serologic test for ZIKV has greatly expanded the national capacity for such testing, the need to further characterize and improve these assays, particularly with regard to specificity, remains. KEYWORDS Zika virus, serologyZ ika virus (ZIKV) emerged from obscurity in early 2015 following its detection in Bahia, Brazil (1). Over the next year, ZIKV spread rapidly throughout Latin America, the Caribbean, and into the southern United States, resulting in a major and still ongoing international outbreak (2). Currently, over 1 million cases of suspected or confirmed ZIKV infection have been documented in the Americas by the Pan American Health Organization (3). ZIKV, a single-stranded RNA virus and member of the Flavivirus genus, is primarily transmitted through infected Aedes species mosquitoes, which are also primary vectors for dengue (DENV) and chikungunya (CHIKV) viruses, both of which cocirculate in many regions where ZIKV is now considered endemic (4). ZIKV transmis-
We previously showed that herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP27 can posttranscriptionally stimulate mRNA accumulation from a transfected viral late gene encoding glycoprotein C (gC) (K. D. Perkins, J. Gregonis, S. Borge, and S. A. Rice, J. Virol. 77:9872-9884, 2003). We began this study by asking whether ICP27 homologs from other herpesviruses can also mediate this activity. Although the homologs from varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) were inactive, the homolog from bovine herpesvirus 4 (BHV-4), termed HORF1/2, was a very efficient transactivator. Surprisingly, most of the mRNA produced via HORF1/2 transactivation was 225 nucleotides shorter than expected due to the removal of a previously undescribed intron from the gC transcript. We found that the gC mRNA produced in the absence of transactivation was also mostly spliced. In contrast, gC mRNA produced by ICP27 transactivation was predominantly unspliced. Based on these results, we conclude that ICP27 has two distinct effects on the transfected gC gene: it (i) stimulates mRNA accumulation and (ii) promotes the retention of an intron. Interestingly, the spliced transcript encodes a variant of gC that lacks its transmembrane domain and is secreted from transfected cells. As the gC splicing signals are conserved among several HSV-1 strains, we investigated whether the variant gC is expressed during viral infection. We report here that both the spliced transcript and its encoded protein are readily detected in Vero cells infected with three different laboratory strains of wild-type HSV-1. Moreover, the variant gC is efficiently secreted from infected cells. We have designated this alternate form of the protein as gCsec. As the extracellular domain of gC is known to bind heparan sulfate-containing proteoglycans and to inhibit the complement cascade via an interaction with complement component C3b, we speculate that gCsec could function as a secreted virulence factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.