Interactive massively parallel computations are critical for machine learning and data analysis. These computations are a staple of the MIT Lincoln Laboratory Supercomputing Center (LLSC) and has required the LLSC to develop unique interactive supercomputing capabilities. Scaling interactive machine learning frameworks, such as TensorFlow, and data analysis environments, such as MATLAB/Octave, to tens of thousands of cores presents many technical challenges -in particular, rapidly dispatching many tasks through a scheduler, such as Slurm, and starting many instances of applications with thousands of dependencies. Careful tuning of launches and prepositioning of applications overcome these challenges and allow the launching of thousands of tasks in seconds on a 40,000-core supercomputer. Specifically, this work demonstrates launching 32,000 TensorFlow processes in 4 seconds and launching 262,000 Octave processes in 40 seconds. These capabilities allow researchers to rapidly explore novel machine learning architecture and data analysis algorithms.
The Spectre and Meltdown flaws in modern microprocessors represent a new class of attacks that have been difficult to mitigate. The mitigations that have been proposed have known performance impacts. The reported magnitude of these impacts varies depending on the industry sector and expected workload characteristics. In this paper, we measure the performance impact on several workloads relevant to HPC systems. We show that the impact can be significant on both synthetic and realistic workloads. We also show that the performance penalties are difficult to avoid even in dedicated systems where security is a lesser concern.
The oxidative stabilities of fish oil-enriched milk and fish oil-enriched drinking yoghurt were compared by following the development of lipid oxidation in plain milk, plain yoghurt and yoghurt to which ingredients present in drinking yoghurt were added one by one. All samples were enriched with 1 wt-% fish oil. After 3 weeks of storage, development of peroxide values, volatile secondary oxidation products and fishy offflavors were much more pronounced in the milk compared to any of the yoghurt samples, irrespective of any added ingredients used to prepare flavored drinking yoghurt. Thus, pectin, citric acid or gluconodelta-lactone did not affect the oxidative stability of fish oil-enriched yoghurt emulsions. Furthermore, the fruit preparation and added sugar did not lead to increased antioxidative activity. It is concluded that yoghurt as the dairy component in the fish oil-enriched emulsion was responsible for the remarkably high oxidative stability and was able to protect the n-3 PUFA against oxidative deterioration. It should be considered that this strong antioxidative effect of yoghurt might mask potential antioxidative effects of the other ingredients in the drinking yoghurt.
Massive power-law graphs drive many fields: metagenomics, brain mapping, Internet-of-things, cybersecurity, and sparse machine learning. The development of novel algorithms and systems to process these data requires the design, generation, and validation of enormous graphs with exactly known properties. Such graphs accelerate the proper testing of new algorithms and systems and are a prerequisite for success on real applications. Many random graph generators currently exist that require realizing a graph in order to know its exact properties: number of vertices, number of edges, degree distribution, and number of triangles. Designing graphs using these random graph generators is a time-consuming trial-anderror process. This paper presents a novel approach that uses Kronecker products to allow the exact computation of graph properties prior to graph generation. In addition, when a real graph is desired, it can be generated quickly in memory on a parallel computer with no-interprocessor communication. To test this approach, graphs with 10 12 edges are generated on a 40,000+ core supercomputer in 1 second and exactly agree with those predicted by the theory. In addition, to demonstrate the extensibility of this approach, decetta-scale graphs with up to 10 30 edges are simulated in a few minutes on a laptop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.