This research is motivated by the recent IGS Ionosphere Working Group recommendation issued at the IGS 2010 Workshop held in Newcastle, UK. This recommendation encourages studies on the evaluation of the application of COSMIC radio occultation profiles for additional IGS global ionosphere map (GIM) validation. This is because the reliability of GIMs is crucial to many geodetic applications. On the other hand, radio occultation using GPS signals has been proven to be a promising technique to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. However, systematic validation work is still needed before using this powerful technique for sounding the ionosphere on a routine basis. In this paper, we analyze the properties of the ionospheric electron density profiling retrieved from COSMIC radio occultation measurements. A comparison of radio occultation data with groundbased measurements indicates that COSMIC profiles are usually in good agreement with ionosonde profiles, both in the F2 layer peak electron density and the bottom side of the profiles. For this comparison, ionograms recorded by European ionospheric stations (DIAS network) in 2008 were used.
Ionosphere Associate Analysis Centers (IAACs) of the International GNSS Service (IGS) independently produce global ionosphere maps (GIMs) of the total electron content (TEC). The GIMs are based on different modeling techniques, resulting in different TEC levels and accuracies. In this study, we evaluated the accuracy and consistency of the IAAC GIMs during high (2014) and low (2018) solar activity periods of the 24th solar cycle. In our study, we applied two different evaluation methods. First, we carried out a comparison of the GIM-derived slant TEC (STEC) with carrier phase geometry-free combination of GNSS signals obtained from 25 globally distributed stations. Second, vertical TEC (VTEC) from GIMs was compared to altimetry-derived VTEC obtained from the Jason-2 and Jason-3 satellites and complemented for plasmaspheric TEC. The analyzed GIMs obtained STEC RMS values reaching from 1.98 to 3.00 TECU and from 0.96 to 1.29 TECU during 2014 and 2018, respectively. The comparison to altimetry data resulted in VTEC STD values that varied from 3.61 to 5.97 TECU and from 1.92 to 2.78 TECU during 2014 and 2018, respectively. The results show that among the IAACs, the Center for Orbit Determination in Europe global maps performed best in low and high solar activity periods. However, the highest accuracy was obtained by a non-IGS product—UQRG GIMs provided by Universitat Politècnica de Catalunya. It was also shown that the best results were obtained using a modified single layer model mapping function and that the map time interval has a relatively small influence on the resulting map accuracy.
Abstract:The ionosphere is still considered one of the most significant error sources in precise Global Navigation Satellite Systems (GNSS) positioning. On the other hand, new satellite signals and data processing methods allow for a continuous increase in the accuracy of the available ionosphere models derived from GNSS observables. Therefore, many research groups around the world are conducting research on the development of precise ionosphere products. This is also reflected in the establishment of several ionosphere-related working groups by the International Association of Geodesy. Whilst a number of available global ionosphere maps exist today, dense regional GNSS networks often offer the possibility of higher accuracy regional solutions. In this contribution, we propose an approach for regional ionosphere modelling based on un-differenced multi-GNSS carrier phase data for total electron content (TEC) estimation, and thin plate splines for TEC interpolation. In addition, we propose a methodology for ionospheric products self-consistency analysis based on calibrated slant TEC. The results of the presented approach are compared to well-established global ionosphere maps during varied ionospheric conditions. The initial results show that the accuracy of our regional ionospheric vertical TEC maps is well below 1 TEC unit, and that it is at least a factor of 2 better than the global products.
High precision Global Navigation Satellite Systems (GNSS) positioning and time transfer require correcting signal delays, in particular higher‐order ionospheric (I2+) terms. We present a consolidated model to correct second‐ and third‐order terms, geometric bending and differential STEC bending effects in GNSS data. The model has been implemented in an online service correcting observations from submitted RINEX files for I2+ effects. We performed GNSS data processing with and without including I2+ corrections, in order to investigate the impact of I2+ corrections on GNSS products. We selected three time periods representing different ionospheric conditions. We used GPS and GLONASS observations from a global network and two regional networks in Poland and Brazil. We estimated satellite orbits, satellite clock corrections, Earth rotation parameters, troposphere delays, horizontal gradients, and receiver positions using global GNSS solution, Real‐Time Kinematic (RTK), and Precise Point Positioning (PPP) techniques. The satellite‐related products captured most of the impact of I2+ corrections, with the magnitude up to 2 cm for clock corrections, 1 cm for the along‐ and cross‐track orbit components, and below 5 mm for the radial component. The impact of I2+ on troposphere products turned out to be insignificant in general. I2+ corrections had limited influence on the performance of ambiguity resolution and the reliability of RTK positioning. Finally, we found that I2+ corrections caused a systematic shift in the coordinate domain that was time‐ and region‐dependent and reached up to −11 mm for the north component of the Brazilian stations during the most active ionospheric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.