The cerebellar role in non-motor functions is supported by the clinical finding that lesions confined to cerebellum produce the cerebellar cognitive affective syndrome. Nevertheless, there is no consensus regarding the overall cerebellar contribution to cognition. Among other reasons, this deficiency might be attributed to the small sample sizes and narrow breadths of existing studies on lesions in cerebellar patients, which have focused primarily on a single cognitive domain. The aim of this study was to examine the expression of cerebellar cognitive affective syndrome with regard to lesion topography in a large group of subjects with cerebellar damage. We retrospectively analysed charts from patients in the Ataxia Lab of Santa Lucia Foundation between 1997 and 2007. Of 223 charts, 156 were included in the study, focusing on the importance of the cerebellum in cognition and the relevance of lesion topography in defining the cognitive domains that have been affected. Vascular topography and the involvement of deep cerebellar nuclei were the chief factors that determined the cognitive profile. Of the various cognitive domains, the ability to sequence was the most adversely affected in nearly all subjects, supporting the hypothesis that sequencing is a basic cerebellar operation.
Although cognitive impairment after cerebellar damage has been widely reported, the mechanisms of cerebro-cerebellar interactions are still a matter of debate. The cerebellum is involved in sequence detection and production in both motor and sensory domains, and sequencing has been proposed as the basic mechanism of cerebellar functioning. Furthermore, it has been suggested that knowledge of sequencing mechanisms may help to define cerebellar predictive control processes. In spite of its recognized importance, cerebellar sequencing has seldom been investigated in cognitive domains. Cognitive sequencing functions are often analysed by means of action/script elaboration. Lesion and activation studies have localized this function in frontal cortex and basal ganglia circuits. The present study is the first to report deficits in script sequencing after cerebellar damage. We employed a card-sequencing test, developed ad hoc, to evaluate the influence of the content to be sequenced. Stimuli consisted of sets of sentences that described actions with a precise logical and temporal sequence (Verbal Factor), sets of cartoon-like drawings that reproduced behavioural sequences (Behavioural Factor) or abstract figures (Spatial Factor). The influence of the lesion characteristics was analysed by grouping patients according to lesion-type (focal or atrophic) and lesion-side (right or left). The results indicated that patients with cerebellar damage present a cognitive sequencing impairment independently of lesion type or localization. A correlation was also shown between lesion side and characteristics of the material to be sequenced. Namely, patients with left lesions perform defectively only on script sequences based on pictorial material and patients with right lesions only on script sequences requiring verbal elaboration. The present data support the hypothesis that sequence processing is the cerebellar mode of operation also in the cognitive domain. In addition, the presence of right/left and pictorial/verbal differences is in agreement with the idea that cerebro-cerebellar interactions are organized in segregated cortico-cerebellar loops in which specificity is not related to the mode of functioning, but to the characteristics of the information processed.
The idea that cerebellar processing is required in a variety of cognitive functions is well accepted in the neuroscience community. Nevertheless, the definition of its role in the different cognitive domains remains rather elusive. Current data on perceptual and cognitive processing are reviewed with special emphasis on cerebellar sequencing properties. Evidences, obtained by neurophysiological and neuropsychological lesion studies, converge in highlighting comparison of temporal and spatial information for sequence detection as the key stone of cerebellar functioning across modalities. The hypothesis that sequence detection might represent the main contribution of cerebellar physiology to brain functioning is presented and the possible clinical significance in cerebellar-related diseases discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.