The ability to mount a successful stress response in the face of injury is critical to the long-term viability of individual cells and to the organism in general. The stress response, characterized in part by the upregulation of heat shock proteins, is compromised in several neurodegenerative disorders and in some neuronal populations, including motoneurons (MNs). Because astrocytes have a greater capacity than neurons to survive metabolic stress, and because they are intimately associated with the regulation of neuronal function, it is important to understand their stress response, so that we may to better appreciate the impact of stress on neuronal viability during injury or disease. We show that astrocytes subjected to hyperthermia upregulate Hsp/c70 in addition to intracellular signaling components including activated forms of extracellular-signal-regulated kinase (ERK1/2), Akt, and c-jun N-terminal kinase/stress activated protein kinase (JNK/SAPK). Furthermore, astrocytes release increasing amounts of Hsp/c70 into the extracellular environment following stress, an event that is abrogated when signaling through the ERK1/2 and phosphatidylinositol-3 kinase (PI3K) pathways is compromised and enhanced by inhibition of the JNK pathway. Last, we show that the Hsp/c70 is released from astrocytes in exosomes. Together, these data illustrate the diverse regulation of stress-induced Hsp/c70 release in exosomes, and the way in which the balance of activated signal transduction pathways affects this release. These data highlight how stressful insults can alter the microenvironment of an astrocyte, which may ultimately have implications for the survival of neighboring neurons.
Neurofibromatosis type 2 is an autosomal dominant disorder characterized by tumors, predominantly schwannomas, in the nervous system. It is caused by mutations in the gene NF2, encoding the growth regulator schwannomin (also known as merlin). Mutations occur throughout the 17-exon gene, with most resulting in protein truncation and undetectable amounts of schwannomin protein. Pathogenic mutations that result in production of defective schwannomin include in-frame deletions of exon 2 and three independent missense mutations within this same exon. Mice with conditional deletion of exon 2 in Schwann cells develop schwannomas, which confirms the crucial nature of exon 2 for growth control. Here we report that the molecular adaptor paxillin binds directly to schwannomin at residues 50-70, which are encoded by exon 2. This interaction mediates the membrane localization of schwannomin to the plasma membrane, where it associates with beta 1 integrin and erbB2. It defines a pathogenic mechanism for the development of NF2 in humans with mutations in exon 2 of NF2.
The dependence of developing spinal motoneuron survival on a soluble factor(s) from their target, muscle tissue is well established both in vivo and in vitro. Considering this apparent dependence, we examined whether a specific component of the stress response mediates motoneuron survival in trophic factor-deprived environments. We demonstrate that, although endogenous expression of heat shock protein 70 (HSP70) did not change during trophic factor deprivation, application of e-rhHsp70 (exogenous recombinant human Hsp70) promoted motoneuron survival. Conversely, depletion of HSP70 from chick muscle extract (MEx) potently reduces the survivalpromoting activity of MEx. Additionally, exogenous treatment with or spinal cord overexpression of Hsp70 enhances motoneuron survival in vivo during the period of naturally occurring cell death [programmed cell death (PCD)]. Hindlimb muscle cells and lumbar spinal astrocytes readily secrete HSP70 in vitro, suggesting potential physiological sources of extracellular Hsp70 for motoneurons. However, in contrast to exogenous treatment with or overexpression of Hsp70 in vivo, muscle-targeted injections of this factor in an ex vivo preparation fail to attenuate motoneuron PCD. These data (1) suggest that motoneuron survival requirements may extend beyond classical trophic factors to include HSP70, (2) indicate that the source of this factor is instrumental in determining its trophic function, and (3) may therefore influence therapeutic strategies designed to increase motoneuron Hsp70 signaling during disease or injury.
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder that results in the progressive loss of motoneurons (MNs) in the CNS. Several survival and death mechanisms of MNs have been characterized and it has been determined that MNs do not appear to mount a complete stress response, as determined by the lack of heat shock protein 70 (Hsp70) upregulation after several stress paradigms. Hsp70 has been shown to confer neuroprotection and the insufficient availability of Hsp70 may contribute to MNs' susceptibility to death in ALS mice. In this study, recombinant human Hsp70 (rhHsp70) was intraperitoneally injected three times weekly, beginning at postnatal day 50 until endstage, to G93A mutant SOD1 (G93A SOD1) mice. The administration of rhHsp70 was effective at increasing lifespan, delaying symptom onset, preserving motor function and prolonging MN survival. Interestingly, injected rhHsp70 localized to skeletal muscle and was not readily detected in the CNS. Treatment with rhHsp70 also resulted in an increased number of innervated neuromuscular junctions compared with control tissue. Together these results suggest rhHsp70 may delay disease progression in the G93A SOD1 mouse via a yet to be identified peripheral mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.