Incorporating plasmonic nanoparticles in organic photovoltaic (OPV) devices can increase the optical thickness of the organic absorber layer while keeping its physical thickness small. However, trade-offs between various structure parameters have caused contradictions regarding the effectiveness of plasmonics in the literature, that have somewhat stunted the progressing of a unified theoretical understanding for practical applications. We examine the o p t i c a l e n h a n c e m e n t m e c h a n i s m s o f p r a c t i c a l PCDTBT:PC 70 BM OPV cells incorporating metal nanoparticles. The plasmonic near-and far-field contributions are differentiated, with spectrum-and space-wide current enhancements found in the plasmon scattering regime and spectrum-and space-specific current enhancements in the near-field regime. A remarkable system complexity is revealed, where the plasmonic enhancement trends change and even reverse by simple changes in the device geometry. This accounts for many of the contradictory results published in the literature on plasmonic effects in OPVs. By exploring the full structural parameter phase-space we are able to now propose a unified representation that intuitively explains literature findings and trends. Our results show that an already optimized PCDTBT:PC 70 BM cell can be further optically enhanced by plasmonic effects by at least 20% with the incorporation of Ag nanoparticles.
Graphene is an attractive two-dimensional material for nonlinear applications in the THz regime, since it possesses high third order nonlinearity and the ability to support tightly confined surface plasmons. Here, we study 2D-patterned graphene-patch metasurfaces for efficient third harmonic generation. The efficiency of the nonlinear process is enhanced by spectrally aligning the fundamental and third harmonic frequencies with resonances of the metasurface, leading to spatiotemporal energy confinement in both steps of excitation at ω and radiation at 3ω. This precise resonance alignment is enabled by the 2D-patterning; it is achieved by modifying the dispersion of the underlying plasmons and, thus, the spectral positions of the supported standing wave resonances. Efficiencies as high as −20dB (1%) for input intensity 0.1 MW/cm2 are achieved. Moreover, we verify that the efficiency does not deteriorate when finite-size metasurfaces are used in place of ideal periodic systems. Our results highlight the potential of graphene-based metasurfaces for nonlinear applications.
Rectangular, millimeter-scale complementary split ring resonators were fabricated, employing the so-called Computer Numerical Control method, combined with a home-built mechanical engraver. Their electromagnetic performance was thoroughly investigated with respect to their dimensions in the frequency regime between 2 and 9 GHz via combining experiments and corresponding theoretical simulations, wherein a considerably effective consistency was obtained. Moreover, their sensing response was extensively investigated against various aqueous solutions enriched with typical fertilizers used in agriculture, as well as detergents commonly used in every-day life. Corresponding experimental results evidently establish the capability of the studied metasurfaces as potential sensors against water pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.