Feline leukemia virus subgroup C receptor 1 (FLVCR1) is a cell membrane heme exporter that maintains the balance between heme levels and globin synthesis in erythroid precursors. It was previously shown that Flvcr1-null mice died in utero due to a failure of erythropoiesis. Here, we identify Flvcr1b, a mitochondrial Flvcr1 isoform that promotes heme efflux into the cytoplasm. Flvcr1b overexpression promoted heme synthesis and in vitro erythroid differentiation, whereas silencing of Flvcr1b caused mitochondrial heme accumulation and termination of erythroid differentiation. Furthermore, mice lacking the plasma membrane isoform (Flvcr1a) but expressing Flvcr1b had normal erythropoiesis, but exhibited hemorrhages, edema, and skeletal abnormalities. Thus, FLVCR1b regulates erythropoiesis by controlling mitochondrial heme efflux, whereas FLVCR1a expression is required to prevent hemorrhages and edema. The aberrant expression of Flvcr1 isoforms may play a role in the pathogenesis of disorders characterized by an imbalance between heme and globin synthesis.
In the tumor-prone transgenic adenocarcinoma mouse prostate (TRAMP) mouse model we followed the fate of the immune response against the SV40 large T antigen (Tag) selectively expressed in the prostate epithelium during the endogenous transformation from normal cells to tumors. Young (5-7-week-old) male TRAMP mice, despite a dim and patchy expression of Tag overlapping foci of mouse prostate intraepithelial neoplasia, displayed a strong Tag-specific cytotoxic T lymphocyte (CTL) response after an intradermal injection of peptide-pulsed dendritic cells (DC). This response was weaker than the one found in vaccinated wild-type littermates, and was characterized by a reduced frequency and avidity of Tag-specific CTL. Early DC vaccination also subverted the profound state of peripheral tolerance typically found in TRAMP mice older than 9-10 weeks. The DC-induced CTL response indeed was still detectable in TRAMP mice of 16 weeks, and was associated with histology evidence of reduced disease progression. Our findings suggest that tumor antigens are handled as self antigens, and peripheral tolerance is associated with in situ antigen overexpression and cancer progression. Our data also support a relevant role for DC-based vaccines in controlling the induction of peripheral tolerance to tumor antigens.
The transcription factor signal transducer and activator of transcription (STAT) 3 is activated downstream of cytokines, growth factors and oncogenes to mediate their functions under both physiological and pathological conditions. In particular, aberrant/unrestrained STAT3 activity is detected in a wide variety of tumors, driving multiple pro-oncogenic functions. For that, STAT3 is widely considered as an oncogene and is the object of intense translational studies. One of the distinctive features of this factor is however, its ability to elicit different and sometimes contrasting effects under different conditions. In particular, STAT3 activities have been shown to be either pro-oncogenic or tumor-suppressive according to the tumor aetiology/mutational landscape, suggesting that the molecular bases underlining its functions are still incompletely understood. Here we discuss some of the properties that may provide the bases to explain STAT3 heterogeneous functions, and in particular how post-translational modifications contribute shaping its sub-cellular localization and activities, the cross talk between these activities and cell metabolic conditions, and finally how its functions can control the behaviour of both tumor and tumor microenvironment cell populations.
Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.