This study investigates whether the interphotoreceptor retinoid-binding protein (IRBP) is necessary for the release of 11-cis-retinaldehyde (RAL) or if the retinoid is constitutively released from the retinal pigment epithelium (RPE) following synthesis. The strategic location of IRBP in the interphotoreceptor matrix (IPM) and its retinoid-binding ability make it a candidate for a role in 11-cis-RAL release. Fetal bovine RPE cells were grown in permeable chambers, and their apical surfaces were incubated with medium containing either apo-IRBP, the apo form of cellular retinaldehyde-binding protein (CRALBP), the apo form of serum retinol-binding protein (RBP), or bovine serum albumin (BSA) or with medium devoid of binding proteins. [3H]-all-trans-Retinol (ROL) was delivered to the basal surface of the cells by RBP. High-performance liquid chromatography demonstrated that [3H]-11-cis-RAL was optimally released into the apical medium when apo-IRBP was present. The most surprising result was the diminished level of [3H]-11-cis-RAL when apo-CRALBP was in the apical medium. Circular dichroism demonstrated that CRALBP had not been denatured by the photobleaching required for endogenous ligand removal. Therefore, apo-CRALBP should have been able to bind [3H]-11-cis-RAL if it was constitutively released into the apical medium. In addition, when proteins other than apo-IRBP were present, or if the cells were incubated with medium alone, the observed decrease in apical [3H]-11-cis-RAL was concomitant with a buildup of intracellular [3H]-all-trans-retinyl palmitate and [3H]-all-trans-ROL in the basal culture medium.(ABSTRACT TRUNCATED AT 250 WORDS)
Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Muller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 1 1-cis-retinal and/or 1 1-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein.Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 1 5 2 0 % of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state I9F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.