At container terminals, many cargo handling processes are interconnected and occur in parallel. Within short time windows, many operational decisions need to be made and should consider both time efficiency and equipment utilization. During operation, many sources of disturbance and, thus, uncertainty exist. For these reasons, perfectly coordinated processes can potentially unravel. This study analyzes simulation-based optimization, an approach that considers uncertainty by means of simulation while optimizing a given objective. The developed procedure simultaneously scales the amount of utilized equipment and adjusts the selection and tuning of operational policies. Thus, the benefits of a simulation study and an integrated optimization framework are combined in a new way. Four meta-heuristics—Tree-structured Parzen Estimator, Bayesian Optimization, Simulated Annealing, and Random Search—guide the simulation-based optimization process. Thus, this study aims to determine a favorable configuration of equipment quantity and operational policies for container terminals using a small number of experiments and, simultaneously, to empirically compare the chosen meta-heuristics including the reproducibility of the optimization runs. The results show that simulation-based optimization is suitable for identifying the amount of required equipment and well-performing policies. Among the presented scenarios, no clear ranking between meta-heuristics regarding the solution quality exists. The approximated optima suggest that pooling yard trucks and a yard block assignment that is close to the quay crane are preferable.
At container terminals, many cargo handling processes are interconnected and take place in parallel. Within short time windows, many operational decisions need to be taken considering both time and equipment efficiency. During operation, many sources for disturbance exist. These are the reason why perfectly coordinated processes are possibly unraveled. An approach that considers disturbance factors while optimizing a given objective is simulation-based optimization.
This study analyses simulation-based optimization as a procedure
to simultaneously scale the number of utilized equipment
and to adjust the choice and tuning of operational policies.
The four meta-heuristics Tree-structured Parzen Estimator, Bayesian Optimization, Simulated Annealing, and Random Search guide the simulation-based optimization process. The results show that simulation-based optimization is suitable to identify the amount of required equipment and well-performing policies. Thereby, there is no clear ranking which of the meta-heuristics finds the best approximation of the optimum. The approximated optima suggest that pooling terminal trucks as well as a yard block assignment close to the quay crane is preferable. With an increasing number of quay cranes, the number of optimal terminal trucks for each quay crane decreases as well as the range of truck utilization within one experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.