IMPORTANCE Newborn screening for severe combined immunodeficiency (SCID) using assays to detect T-cell receptor excision circles (TRECs) began in Wisconsin in 2008, and SCID was added to the national recommended uniform panel for newborn screened disorders in 2010. Currently 23 states, the District of Columbia, and the Navajo Nation conduct population-wide newborn screening for SCID. The incidence of SCID is estimated at 1 in 100 000 births. OBJECTIVES To present data from a spectrum of SCID newborn screening programs, establish population-based incidence for SCID and other conditions with T-cell lymphopenia, and document early institution of effective treatments. DESIGN Epidemiological and retrospective observational study. SETTING Representatives in states conducting SCID newborn screening were invited to submit their SCID screening algorithms, test performance data, and deidentified clinical and laboratory information regarding infants screened and cases with nonnormal results. Infants born from the start of each participating program from January 2008 through the most recent evaluable date prior to July 2013 were included. Representatives from 10 states plus the Navajo Area Indian Health Service contributed data from 3 030 083 newborns screened with a TREC test. MAIN OUTCOMES AND MEASURES Infants with SCID and other diagnoses of T-cell lymphopenia were classified. Incidence and, where possible, etiologies were determined. Interventions and survival were tracked. RESULTS Screening detected 52 cases of typical SCID, leaky SCID, and Omenn syndrome, affecting 1 in 58 000 infants (95%CI, 1/46 000-1/80 000). Survival of SCID-affected infants through their diagnosis and immune reconstitution was 87%(45/52), 92%(45/49) for infants who received transplantation, enzyme replacement, and/or gene therapy. Additional interventions for SCID and non-SCID T-cell lymphopenia included immunoglobulin infusions, preventive antibiotics, and avoidance of live vaccines. Variations in definitions and follow-up practices influenced the rates of detection of non-SCID T-cell lymphopenia. CONCLUSIONS AND RELEVANCE Newborn screening in 11 programs in the United States identified SCID in 1 in 58 000 infants, with high survival. The usefulness of detection of non-SCID T-cell lymphopenias by the same screening remains to be determined.
Background: Tandem mass spectrometry (MS/MS) is rapidly being adopted by newborn screening programs to screen dried blood spots for >20 markers of disease in a single assay. Limited information is available for setting the marker cutoffs and for the resulting positive predictive values. Methods: We screened >160 000 newborns by MS/MS. The markers were extracted from blood spots into a methanol solution with deuterium-labeled internal standards and then were derivatized before analysis by MS/MS. Multiple reaction monitoring of each sample for the markers of interest was accomplished in ∼1.9 min. Cutoffs for each marker were set at 6–13 SD above the population mean. Results: We identified 22 babies with amino acid disorders (7 phenylketonuria, 11 hyperphenylalaninemia, 1 maple syrup urine disease, 1 hypermethioninemia, 1 arginosuccinate lyase deficiency, and 1 argininemia) and 20 infants with fatty and organic acid disorders (10 medium-chain acyl-CoA dehydrogenase deficiencies, 5 presumptive short-chain acyl-CoA dehydrogenase deficiencies, 2 propionic acidemias, 1 carnitine palmitoyltransferase II deficiency, 1 methylcrotonyl-CoA carboxylase deficiency, and 1 presumptive very-long chain acyl-CoA dehydrogenase deficiency). Approximately 0.3% of all newborns screened were flagged for either amino acid or acylcarnitine markers; approximately one-half of all the flagged infants were from the 5% of newborns who required neonatal intensive care or had birth weights <1500 g. Conclusions: In screening for 23 metabolic disorders by MS/MS, an mean positive predictive value of 8% can be achieved when using cutoffs for individual markers determined empirically on newborns.
Background Combined immunodeficiencies (CIDs) denote inborn errors of T-cell immunity with T cells present but quantitatively or functionally deficient. Impaired humoral immunity, either due to a primary B cell defect or secondary to the T-cell defect, is also frequent. Consequently, patients with CID display severe infections and/or autoimmunity. The specific molecular, cellular, and clinical features of many types of CID remain unknown. Methods We performed genetic and cellular immunological studies in five unrelated children who shared a history of early-onset invasive bacterial and viral infections, with lymphopenia and defective T-, B-, and NK-cell responses. Two patients died early in childhood, whereas the other three underwent allogeneic hematopoietic stem cell transplantation with normalization of T cell function and clinical improvement. Results We identified bi-allelic mutations in the Dedicator Of Cytokinesis 2 (DOCK2) gene in these five patients. RAC1 activation was impaired in T cells. Chemokine-induced migration and actin polymerization were defective in T, B, and NK cells. NK-cell degranulation was also affected. The production of interferon (IFN)-α and -λ by peripheral blood mononuclear cells (PBMCs) was diminished following virus infection. Moreover, in DOCK2-deficient fibroblasts, virus replication was increased and there was enhanced virus-induced cell death, which could be normalized by treatment with IFN-α2β or upon expression of wild-type DOCK2. Conclusions Autosomal recessive DOCK2 deficiency is a Mendelian disorder with pleiotropic defects of hematopoietic and non-hematopoietic immunity. Children with clinical features of CID, especially in the presence of early-onset, invasive infections may have this condition.
Background Combined Immunodeficiency with Multiple Intestinal Atresias (CID-MIA) is a rare hereditary disease characterized by intestinal obstructions and profound immune defects. Objective We sought to determine the underlying genetic causes of CID-MIA by analyzing the exomic sequence of 5 patients and their healthy direct relatives from 5 unrelated families. Methods We performed whole exome sequencing on 5 CID-MIA patients and 10 healthy direct family members belonging to 5 unrelated families with CID-MIA. We also performed targeted Sanger sequencing for the candidate gene TTC7A on 3 additional CID-MIA patients. Results Through analysis and comparison of the exomic sequence of the individuals from these 5 families, we identified biallelic damaging mutations in the TTC7A gene, for a total of 7 distinct mutations. Targeted TTC7A gene sequencing in 3 additional unrelated patients with CID-MIA revealed biallelic deleterious mutations in two of them, as well as an aberrant splice product in the third patient. Staining of normal thymus showed that the TTC7A protein is expressed in thymic epithelial cells as well as in thymocytes. Moreover, severe lymphoid depletion was observed in the thymus and peripheral lymphoid tissues from two patients with CID-MIA. Conclusions We identified deleterious mutations of the TTC7A gene in 8 unrelated patients with CID-MIA and demonstrated that the TTC7A protein is expressed in the thymus. Our results strongly suggest that TTC7A gene defects cause CID-MIA. Clinical Implications Damaging mutations in the gene TTC7A should be scrutinized in patients with CID-MIA. Characterization of the role of this protein in the immune system and intestinal development, as well as in thymic epithelial cells may have important therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.