BackgroundHighly purified infected red blood cells (irbc), or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS) offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary.MethodsA dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from Plasmodium falciparum cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates.ResultsIn HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%). With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures.ConclusionThe novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.