To test the hypothesis that tolerating some subretinal fluid (SRF) in patients with neovascular agerelated macular degeneration (nAMD) treated with ranibizumab using a treat-and-extend (T&E) regimen can achieve similar visual acuity (VA) outcomes as treatment aimed at resolving all SRF.Design: Multicenter, randomized, 24-month, phase 4, single-masked, noninferiority clinical trial.Participants: Participants with treatment-naïve active subfoveal choroidal neovascularization (CNV). Methods: Participants were randomized to receive ranibizumab 0.5 mg monthly until either complete resolution of SRF and intraretinal fluid (IRF; intensive arm: SRF intolerant) or resolution of all IRF only (relaxed arm: SRF tolerant except for SRF >200 mm at the foveal center) before extending treatment intervals. A 5-letter noninferiority margin was applied to the primary outcome.Main Outcome Measures: Mean change in best-corrected VA (BCVA), and central subfield thickness and number of injections from baseline to month 24.Results: Of the 349 participants randomized (intensive arm, n ¼ 174; relaxed arm, n ¼ 175), 279 (79.9%) completed the month 24. The mean change in BCVA from baseline to month 24 was 3.0 letters (standard deviation, 16.3 letters) in the intensive group and 2.6 letters (standard deviation, 16.3 letters) in the relaxed group, demonstrating noninferiority of the relaxed compared with the intensive treatment (P ¼ 0.99). Similar proportions of both groups achieved 20/40 or better VA (53.5% and 56.6%, respectively; P ¼ 0.92) and 20/200 or worse VA (8.7% and 8.1%, respectively; P ¼ 0.52). Participants in the relaxed group received fewer ranibizumab injections over 24 months (mean, 15.8 [standard deviation, 5.9]) than those in the intensive group (mean, 17 [standard deviation, 6.5]; P ¼ 0.001). Significantly more participants in the intensive group never extended beyond 4-week treatment intervals (13.5%) than in the relaxed group (2.8%; P ¼ 0.003), and significantly more participants in the relaxed group extended to and maintained 12-week treatment intervals (29.6%) than the intensive group (15.0%; P ¼ 0.005).Conclusions: Patients treated with a ranibizumab T&E protocol who tolerated some SRF achieved VA that is comparable, with fewer injections, with that achieved when treatment aimed to resolve all SRF completely.
Neurons display extreme degrees of polarization, including compartment-specific organelle morphology. In cortical, long-range projecting, pyramidal neurons (PNs), dendritic mitochondria are long and tubular whereas axonal mitochondria display uniformly short length. Here we explored the functional significance of maintaining small mitochondria for axonal development in vitro and in vivo. We report that the Drp1 ‘receptor’ Mitochondrial fission factor (MFF) is required for determining the size of mitochondria entering the axon and then for maintenance of their size along the distal portions of the axon without affecting their trafficking properties, presynaptic capture, membrane potential or ability to generate ATP. Strikingly, this increase in presynaptic mitochondrial size upon MFF downregulation augments their capacity for Ca2+ ([Ca2+]m) uptake during neurotransmission, leading to reduced presynaptic [Ca2+]c accumulation, decreased presynaptic release and terminal axon branching. Our results uncover a novel mechanism controlling neurotransmitter release and axon branching through fission-dependent regulation of presynaptic mitochondrial size.
Objective: Estimates of the penetrance of LRRK2 G2019S vary widely (24%-100%), reflective of differences in ascertainment, age, sex, ethnic group, and genetic and environmental modifiers. Methods:The kin-cohort method was used to predict penetrance in 2,270 relatives of 474 Ashkenazi Jewish (AJ) Parkinson disease (PD) probands in the Michael J. Fox LRRK2 AJ Consortium in New York and Tel Aviv, Israel. Patients with PD were genotyped for the LRRK2 G2019S mutation and at least 7 founder GBA mutations. GBA mutation carriers were excluded. A validated family history interview, including age at onset of PD and current age or age at death for each first-degree relative, was administered. Neurologic examination and LRRK2 genotype of relatives were included when available.Results: Risk of PD in relatives predicted to carry an LRRK2 G2019S mutation was 0.26 (95% confidence interval [CI] 0.18-0.36) to age 80 years, and was almost 3-fold higher than in relatives predicted to be noncarriers (hazard ratio [HR] 2.89, 95% CI 1.73-4.55, p , 0.001). The risk among predicted G2019S carrier male relatives (0.22, 95% CI 0.10-0.37) was similar to predicted carrier female relatives (0.29, 95% CI 0.18-0.40; HR male to female: 0.74, 95% CI 0.27-1.63, p 5 0.44). In contrast, predicted noncarrier male relatives had a higher risk (0.15, 95% CI 0.11-0.20) than predicted noncarrier female relatives (0.07, 95% CI 0.04-0.10; HR male to female: 2.40, 95% CI 1.50-4.15, p , 0.001). Conclusion:Penetrance of LRRK2 G2019S in AJ is only 26% and lower than reported in other ethnic groups. Further study of the genetic and environmental risk factors that influence G2019S penetrance is warranted. Neurology ® 2015;85:89-95 GLOSSARY AJ 5 Ashkenazi Jewish; CI 5 confidence interval; FHI 5 family history interview; GBA 5 glucocerebrosidase; HR 5 hazard ratio; PD 5 Parkinson disease.
Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.
Background Penetrance estimates of the LRRK2 p.G2019S mutation for Parkinson’s disease (PD) vary widely (24%–100%). The p.G2019S penetrance in individuals of Ashkenazi Jewish ancestry has been estimated as 25%, adjusted for multiple covariates. It is unknown whether penetrance varies among different ethnic groups. The objective of this study was to estimate the penetrance of p.G2019S in individuals of non-Ashkenazi Jewish ancestry and compare penetrance between Ashkenazi Jews and non-Ashkenazi Jews to age 80. Methods The kin-cohort method was used to estimate penetrance in 474 first-degree relatives of 69 non-Ashkenazi Jewish LRRK2 p.G2019S carrier probands at eight sites from the Michael J. Fox LRRK2 Cohort Consortium. An identical validated family history interview was administered to assess age at onset of PD, current age, or age at death for relatives in different ethnic groups at each site. Neurological examination and LRRK2 genotype of relatives were included, when available. Results Risk of PD in non-Ashkenazi Jewish relatives who carry a LRRK2 p.G2019S mutation was 42.5% (95% CI: 26.3 – 65.8%) to age 80 which is not significantly higher than the previously estimated 25% (95% CI: 16.7 – 34.2%) in Ashkenazi Jewish carrier relatives. The penetrance of PD to age 80 in LRRK2 p.G2019S mutation carrier relatives was significantly higher than the non-carrier relatives, as seen in Ashkenazi Jewish relatives. Conclusions The similar penetrance of LRRK2 p.G2019S estimated in Ashkenazi Jewish carriers and non-Ashkenazi Jewish carriers confirms that p.G2019S penetrance is 25–42.5% at age 80 in all populations analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.