G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a K D of 38 ± 5 μM. The BIM ligand stacks at the 5′ and 3′ quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.
G-quadruplexes (G4s) are four-stranded motifs formed by G-rich nucleic acid sequences. These structures harbor significant biological importance as they are involved in telomere maintenance, transcription, and translation. Owing to their...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.