Aqueous zinc-ion batteries (ZIBs) with metallic Zn anodes have emerged as promising candidates for large-scale energy storage systems due to their inherent safety and competitive capacity. However, challenges of Zn anodes, including dendrite growth and side reactions, impede the commercialization of ZIBs. The regulation of the Zn/electrolyte interphase is a feasible method to achieve high-performance ZIBs with prolonged lifespan and high reversibility. Considering the as-made artificial interphase is the result of a combination of protection materials, protection mechanisms, and construction techniques, this review comprehensively summarizes the recent progress of interphase modulation and provides a systematic guideline for constructing ideal artificial layers. In addition to revealing the entanglement relationship between the failure behaviors of Zn anodes and timely concluding the emerging protection mechanisms for stable Zn/electrolyte interphase, this review also evaluates the constructing techniques in regard of commercialization, including engineering workflow, strength, shortcoming, applicable materials, and protection effect, aiming to pave the way to practical application. Finally, this review presents noteworthy points of ideal artificial layer. It is expected that this review can enlighten researchers to not only explore ideal interphases of Zn anodes for practical application, but also design other metal anodes in aqueous batteries with similar failure behaviors.
Aqueous Zn‐ion batteries (ZIBs) stand out as promising next‐generation energy storage systems. However, the Zn anode failure caused by the unstable Zn/electrolyte interface hinders their practical applications. Constructing artificial layer on the Zn surface provides an effective method to optimize the interfacial stability and mitigate the issues, while most of the current investigations put emphasis on the discussion of Zn2+ and H2O regulation, we notice that the anions and hydrogen evolution reaction (HER) intermediates also play a crucial role in the occurrence of side reactions, thus a comprehensive evaluation of interfacial modulation strategies regarding all the different ion species in ZIBs system is helpful for developing advanced artificial interface. Herein, this work systematically reviews the achievements about cation and anion modulation strategies for stabilizing Zn/electrolyte interface and emphasizes on the relationship between the materials properties and ion regulation mechanisms for the first time, aiming to provide an unprecedented design reference. Furthermore, some noteworthy points and perspectives are proposed, which has guiding significance for the realization of high‐performance and multi‐level regulated Zn anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.