Autonomous shape transformation is key in developing high-performance soft robotics technology; the search for pronounced actuation mechanisms is an ongoing mission. Here, we present the programmable shape morphing of a threedimensional (3D) curved gel structure by harnessing multimode mechanical instabilities during free swelling. First of all, the coupling of buckling and creasing occurs at the dedicated region of the gel structure, which is attributed to the edge and surface instabilities resulted from structure-defined spatial nonuniformity of swelling. The subsequent developments of post-buckling morphologies and crease patterns collaboratively drive the structural transformation of the gel part from the "open" state to the "closed" state, thus realizing the function of gripping. By utilizing the multi-stimuli-responsive nature of the hydrogel, we recover the swollen gel structure to its initial state, enabling reproducible and cyclic shape evolution. The described soft gel structure capable of shape transformation brings a variety of advantages, such as easy to fabricate, large strain transformation, efficient actuation, and high strength-to-weight ratio, and is anticipated to provide guidance for future applications in soft robotics, flexible electronics, offshore engineering, and healthcare products.
Interfacial interactions within a multi-phase polymer solution play critical roles in processing control and mass transportation in chemical engineering. However, the understandings of these roles remain unexplored due to the complexity of the system. In this study, we used an efficient analytical method—a nonequilibrium molecular dynamics (NEMD) simulation—to unveil the molecular interactions and rheology of a multiphase solution containing cetyltrimethyl ammonium chloride (CTAC), polyacrylamide (PAM), and sodium salicylate (NaSal). The associated macroscopic rheological characteristics and shear viscosity of the polymer/surfactant solution were investigated, where the computational results agreed well with the experimental data. The relation between the characteristic time and shear rate was consistent with the power law. By simulating the shear viscosity of the polymer/surfactant solution, we found that the phase transition of micelles within the mixture led to a non-monotonic increase in the viscosity of the mixed solution with the increase in concentration of CTAC or PAM. We expect this optimized molecular dynamic approach to advance the current understanding on chemical–physical interactions within polymer/surfactant mixtures at the molecular level and enable emerging engineering solutions.
A stimuli-responsive gel impregnated surface with switchable lipophilic/oleophobic properties driven by the swelling effect of a hydrogel with controllable morphology.
Polyampholyte (PA) hydrogels have attracted significant attentions for their superior mechanical strength and toughness compared with other conventional hydrogels. In this study, we present a novel thermodynamic approach to understand the mechano-chemo-electrotaxis coupling and interfacial dynamics in the PA hydrogels. Flory-Huggins theory, carried through an interfacial free-energy model, is the foundation for quantitative study of mechanically constitutive relationship of the PA gels. The proposed free-energy model is further extended to describe the mechano-chemo-electrotaxis switching and interfacial dynamics by co-relating Williams-Landel-Ferry equation and scaling laws. It was concluded that the interfacial bonding strength is the key factor to influence mechanical strength and reconstruction reversibility of the PA macromolecular gel system. The resulted analytical outcomes showed good agreement with the reported experimental data. We opine that the proposed model will guide the future application of PA hydrogels.
Polymer surface patterning and modification at the micro/nano scale has been discovered with great impact in applications such as microfluidics and biomedical technologies. We propose a highly efficient fabricating strategy, to achieve a functional polymer surface, which has control over the surface roughness. The key development in this fabrication method is the polymer positive diffusion effect (PDE) for an ion-bombarded polymeric hybrid surface through focused ion beam (FIB) technology. The PDE is theoretically explored by introducing a positive diffusion term into the classic theory. The conductivity-induced PDE constant is discussed as functions of substrates conductivity, ion energy and flux. The theoretical results agree well with the experiential results on the conductivity-induced PDE, and thus yield good control over roughness and patterning milling depth on the fabricated surface. Moreover, we demonstrate a controllable surface wettability in hydrophobic and superhydrophobic surfaces (contact angles (CA) range from 108.3° to 150.8°) with different CA hysteresis values ranging from 31.4° to 8.3°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.