Mucosal repair is a complex event that immediately follows acute injury induced by ischemia and noxious luminal contents such as bile. In the small intestine, villous contraction is the initial phase of repair and is initiated by myofibroblasts that reside immediately beneath the epithelial basement membrane. Subsequent events include crawling of healthy epithelium adjacent to the wound, referred to as restitution. This is a highly regulated event involving signaling via basement membrane integrins by molecules such as focal adhesion kinase and growth factors. Interestingly, however, ex vivo studies of mammalian small intestine have revealed the importance of closure of the interepithelial tight junctions and the paracellular space. The critical role of tight junction closure is underscored by the prominent contribution of the paracellular space to measures of barrier function such as transepithelial electrical resistance. Additional roles are played by subepithelial cell populations, including neutrophils, related to their role in innate immunity. The net result of reparative mechanisms is remarkably rapid closure of mucosal wounds in mammalian tissues to prevent the onset of sepsis.
In vitro studies on the pathogenesis in swine have been hampered by the lack of relevant porcine cell lines. Since many bacterial infections are swine-specific, studies on pathogenic mechanisms require appropriate cell lines of porcine origin. We have characterized the permanent porcine intestinal epithelial cell line, IPEC-J2, using a variety of methods in order to assess the usefulness of this cell line as an in vitro infection model. Electron microscopic analyses and histochemical staining revealed the cells to be enterocyte-like with microvilli, tight junctions and glycocalyx-bound mucin. The functional integrity of monolayers was determined by transepithelial electrical resistance (TEER) measurements. Both commensal bacteria and important bacterial pathogens were chosen for study based on their principally different infection mechanisms: obligate extracellular Escherichia coli, facultative intracellular Salmonella and obligate intracellular Chlamydia. We determined the colonization and proliferation of the bacteria on and within the host cells and monitored the host cell response. We verified the expression of mRNAs encoding the cytokines IL-1alpha, -6, -7, -8, -18, TNF-alpha and GM-CSF, but not TGF-beta or MCP-1. IL-8 protein expression was enhanced by Salmonella invasion. We conclude that the IPEC-J2 cell line provides a relevant in vitro model system for porcine intestinal pathogen-host cell interactions.
Weaning in the piglet is a stressful event associated with gastrointestinal disorders and increased disease susceptibility. Although stress is thought to play a role in postweaning intestinal disease, the mechanisms by which stress influences intestinal pathophysiology in the weaned pig are not understood. The objectives of these experiments were to investigate the impact of weaning on gastrointestinal health in the pig and to assess the role of stress signaling pathways in this response. Nineteen-day-old pigs were weaned, and mucosal barrier function and ion transport were assessed in jejunal and colonic tissues mounted on Ussing chambers. Weaning caused marked disturbances in intestinal barrier function, as demonstrated by significant ( P < 0.01) reductions in transepithelial electrical resistance and increases in intestinal permeability to [3H]mannitol in both the jejunum and colon compared with intestinal tissues from age-matched, unweaned control pigs. Weaned intestinal tissues exhibited increased intestinal secretory activity, as demonstrated by elevated short-circuit current that was sensitive to treatment with tetrodotoxin and indomethacin, suggesting activation of enteric neural and prostaglandin synthesis pathways in weaned intestinal tissues. Western blot analyses of mucosal homogenates showed increased expression of corticotrophin-releasing factor (CRF) receptor 1 in the jejunum and colon of weaned intestinal tissues. Pretreatment of pigs with the CRF receptor antagonist α-helical CRF(9–41), which was injected intraperitoneally 30 min prior to weaning, abolished the stress-induced mucosal changes. Our results indicate that weaning stress induces mucosal dysfunction mediated by intestinal CRF receptors and activated by enteric nerves and prostanoid pathways.
Our previous work has demonstrated that weaning at 19 days of age has deleterious effects on mucosal barrier function in piglet intestine that are mediated through peripheral CRF receptor signaling pathways. The objectives of the present study were to assess the impact of piglet age on weaning-associated intestinal dysfunction and to determine the role that mast cells play in weaning-induced breakdown of mucosal barrier function. Nursing Yorkshire-cross piglets were either weaned at 19 days of age (earlyweaned, n ϭ 8) or 28 days of age (late-weaned, n ϭ 8) and housed in nursery pens. Twenty-four hours postweaning, segments of midjejunum and ascending colon from piglets within each weaning age group were harvested and mounted on Ussing chambers for measurements of transepithelial electrical resistance and serosal-to-mucosal [ 3 H]mannitol fluxes. Early weaning resulted in reductions in transepithelial electrical resistance and increases in mucosal permeability to [ 3 H]mannitol in the jejunum and colon (P Ͻ 0.01). In contrast, postweaning reductions in intestinal barrier function were not observed in piglets weaned at 28 days of age. Early-weaned piglet intestinal mucosa had increased expression of CRF receptor 1 protein, increased mucosal mast cell tryptase levels, and evidence of enhanced mast cell degranulation compared with late-weaned intestinal mucosa. Pretreatment of piglets with the mast cell stabilizer drug cromolyn, injected intraperitoneally 30 min prior to weaning, abolished the early-weaninginduced intestinal barrier disturbances. Our results indicate that earlyweaning stress induces mucosal dysfunction mediated by intestinal mast cell activation and can be prevented by delaying weaning. stress; barrier function; corticotropin releasing factor; tryptase IN NATURE, WEANING IN THE PIG is a gradual process that occurs at ϳ3 mo of age and represents the shift from the piglets reliance on sow's milk to other food sources (32). However, in most modern U.S. swine production systems, weaning is an abrupt process occurring early in life at around 19 days of age. Early weaning is stressful because the piglet must rapidly adapt to dramatic changes in its social and physical environment. Such changes include maternal and littermate separation, abrupt changes in diet, commingling with unfamiliar pigs, and physical establishment of the social hierarchy. These combined stressors have a significant impact on postweaning pig health and welfare through reductions in feed intake and performance, development of behavioral vices, and increased susceptibility to disease (15,19,23).Previous research has shown that the weaning process has a deleterious impact on piglet intestinal mucosal health, highlighted by increased intestinal permeability and heightened baseline and agonist-stimulated secretory responses in the weaned intestine (8,10,30,42). These disturbances in intestinal function likely play a significant role in postweaning enteric disorders. For example, increased intestinal permeability allows the transmigration ...
Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.