evidence for mixing between fluids exsolved at different depths in the magmatic system of Mt Etna (Italy). Geochimica et Cosmochimica Acta, Elsevier, 2012Elsevier, , 84, pp.380-394. <10.1016Elsevier, /j.gca.2012.01.028>.
Five gas discharges in the area of Mount Etna volcano (Italy) and in the near Hyblean plateau have been monitored since 1996. All the emissions displayed low contributions from crustal fluids, whereas magmatic gases were the main component. Selective dissolution of these gases into hydrothermal aquifers has been recognized and modeled, allowing us to calculate the original composition of the magma‐released gases. The inferred composition of the magmatic gases exhibits synchronous variations of He/Ne and He/CO2 ratios, which are coherent with the magma degassing process. On the basis of numerical simulations of volatile degassing from Etnean basalts we have computed the initial and final pressures of the magma batches feeding the emissions. We thus can define the levels of the Etna plumbing system where magmas are stored. Pressure values were around 360 and 160 MPa for initial and final stages, respectively, meaning related depths of about 10 and 3 km below sea level, matching those obtained by geophysical investigations for the deep and shallow magma reservoirs. In addition, we have been able to recognize episodes of magma migration from the deeper reservoir toward the shallow one. An important magma injection into the shallow storage volume was detected during the onset of the 2001 eruption (17 July). No further injection had taken place during this period until September 2001, providing a possible reason for the quick exhaustion of the eruption. In view of this we suggest that the sampled emissions are a powerful geochemical tool to investigate the Etna's plumbing system and its magma dynamics, as well as the development of eruptive events.
We present unprecedented data of real-time measurements of the concentration and isotope composition of CO 2 in air and in fumarole-plume gases collected in 2013 during two campaigns at Mount Etna volcano, which were made using a laser-based isotope ratio infrared spectrometer. We performed approximately 360 measurements/h, which allowed calculation of the δ 13 C values of volcanic CO 2 . The fumarole gases of Torre del Filosofo (2900 m above sea level) range from À3.24 ± 0.06‰ to À3.71 ± 0.09‰, comparable to isotope ratio mass spectrometry (IRMS) measurements of discrete samples collected on the same dates. Plume gases sampled more than 1 km from the craters show a δ 13 C = À2.2 ± 0.4‰, in agreement with the crater fumarole gases analyzed by IRMS. Measurements performed along~17 km driving track from Catania to Mount Etna show more negative δ 13 C values when passing through populated centers due to anthropogenic-derived CO 2 inputs (e.g., car exhaust). The reported results demonstrate that this technique may represent an important advancement for volcanic and environmental monitoring.
Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.
Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear 1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15 N 15 N isotopologue of N 2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ 15 N (the fractional difference in 15 N/ 14 N from air), N 2 / 36 Ar and N 2 / 3 He. Our results show that negative δ 15 N values observed in gases, previously regarded as indicating a mantle origin for nitrogen 7-10 , in fact represent dominantly air-derived N 2 that experienced 15 N/ 14 N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15 N 15 N data allow extrapolations that characterize mantle endmember δ 15 N, N 2 / 36 Ar and N 2 / 3 He values. We show that the Eifel region has slightly increased δ 15 N and N 2 / 36 Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts 11 , consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ 15 N values substantially greater than that of the convective mantle, resembling surface components 12-15 , its N 2 / 36 Ar and N 2 / 3 He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high mid-ocean-ridge basalt and plume δ 15 N values may both be dominantly primordial features. Differentiated bodies from our Solar System have rocky mantles with 15 N/ 14 N ratios within ±15‰ of modern terrestrial air 16,17. This is true for Earth's convective mantle, which has a δ 15 N value of approximately −5 ± 3‰, based on measurements from diamonds 5,18 and basalts that have been filtered for air contamination 3,11. Conversely, volatilerich chondritic meteorites exhibit highly variable δ 15 N values between −20 ± 11‰ for enstatite chondrites and 48 ± 9‰ for CI carbonaceous chondrites 16,19. The distinct 15 N/ 14 N of rocky mantles relative to the chondrites may reflect inheritance of N from a heterogeneous mixture of chondritic precursors 3. Alternatively, the relatively high 15 N/ 14 N values could be the result of evaporative losses 20 , or equilibrium partitioning of N isotopes between metal cores and rocky mantles 21,22. For Earth, plate tectonics allows for another interpretation 1. Geochemists have suggested that mantle δ 15 N v...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.