We discuss the onset of symmetry breaking from the false vacuum in generic scenarios in which the mass squared of the symmetry breaking ͑Higgs͒ field depends linearly with time, as it occurs, via the evolution of the inflaton, in models of hybrid inflation. We show that the Higgs fluctuations evolve from quantum to classical during the initial stages. This justifies the subsequent use of real-time lattice simulations to describe the fully nonperturbative and nonlinear process of symmetry breaking. The early distribution of the Higgs field is that of a smooth classical Gaussian random field, and consists of lumps whose shape and distribution is well understood analytically. The lumps grow with time and develop into ''bubbles'' which eventually collide among themselves, thus populating the high momentum modes, in their way towards thermalization at the true vacuum. With the help of some approximations we are able to provide a quasianalytic understanding of this process.
We study the onset of symmetry breaking after hybrid inflation in a model
having the field content of the SU(2) gauge-scalar sector of the standard
model, coupled to a singlet inflaton. This process is studied in
(3+1)-dimensions in a fully non-perturbative way with the help of lattice
techniques within the classical approximation. We focus on the role played by
gauge fields and, in particular, on the generation of Chern-Simons number. Our
results are shown to be insensitive to the various cut-offs introduced in our
numerical approach. The spectra preserves a large hierarchy between long and
short-wavelength modes during the whole period of symmetry breaking and
Chern-Simons generation, confirming that the dynamics is driven by the low
momentum sector of the theory. We establish that the Chern-Simons production
mechanism is associated with local sphaleron-like structures. The corresponding
sphaleron rates are of order 10^{-5} m^4, which, within certain scenarios of
electroweak baryogenesis and a (not unnaturally large) additional source of CP
violation, could explain the present baryon asymmetry of the universe.Comment: 28 pages, 15 figures, ReVTeX. With minor corrections, version to
appear in Phys. Rev.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.