Tagetes (marigold) is native to America, and its cultivation currently extends to other countries in Africa, Asia, and Europe. Many species of this genus, such as T. minuta, T. erecta, T. patula, and T. tenuifolia, are cultivated as ornamental plants and studied for their medicinal properties on the basis of their use in folk medicine. Different parts of the Tagetes species are used as remedies to treat various health problems, including dental, stomach, intestinal, emotional, and nervous disorders, as well as muscular pain, across the world. Furthermore, these plants are studied in the field of agriculture for their fungicidal, bactericidal, and insecticidal activities. The phytochemical composition of the extracts of different Tagetes species parts are reported in this work. These compounds exhibit antioxidant, antiinflammatory, and enzyme inhibitory properties. Cultivation and the factors affecting the chemical composition of Tagetes species are also covered. In the current work, available literature on Tagetes species in traditional medicine, their application as a food preservative, and their antimicrobial activities are reviewed.
Many pathological problems are initiated by ultraviolet radiation (UVR), such as skin cancer, the most commonly diagnosed cancer worldwide. The UVA (320–400 nm) and UVB (290–320 nm) wavelengths may cause effects such as photoaging, DNA damage, and a series of cellular alterations. The UVA radiation can damage the DNA, oxidize the lipids, and produce dangerous free radicals, which can cause inflammation, modify the gene expression in response to stress, and weaken the skin immune response. With a minor penetration, the UVB radiation is more harmful, being responsible for immediate damage. Ultraviolet radiation light emitted by the sun is considered necessary for the existence of life but cause radiation problems, especially in the skin. The photoprotective activities of plant extracts and isolated composts were evaluated by many reports, as well as the correlation of these compounds with the antioxidant activity. This review presents plant compounds with interest to the cosmetic industry to be used in sunscreens such as flavonoids and cinnamates.
Bacterial resistance to antibiotics has become a public health issue around the world. The present study aimed to evaluate the antibacterial activity of chalcones isolated from flowers of Arrabidaea brachypoda, and their potential as efflux pump inhibitors of Staphylococcus aureus efflux pumps. Microdilution assays were performed with natural products from A. brachypoda. Chalcones 1, 3, 4, and 5 did not show intrinsic antimicrobial activity against all S. aureus strains tested, but they were able to potentiate the Norfloxacin action against the SA1199-B (norA) strain, with a better modulating action for the 4 trimethoxylated chalcone. All chalcones were also able to potentiate the action of EtBr against SA1199-B strain, suggesting a potential NorA inhibition. Moreover, chalcone 4 was able to interfere in the activity of MepA, and interfered weakly in the QacA/B activity. Molecular docking analyzes showed that tested chalcones are capable of binding in the hydrophobic cavity of NorA and MepA, in the same Norfloxacin binding site, indicating that chalcone 4 compete with the antibiotic for the same NorA and MepA binding sites. Association of chalcone 4 with Norfloxacin could be an alternative against multidrug resistant S. aureus over-productive of NorA or MepA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.