Herein, we report a photocatalytic procedure that enables the acylation/arylation of unfunctionalized alkyl derivatives in flow. The method exploits the ability of the decatungstate anion to act as a hydrogen atom abstractor and produce nucleophilic carbon‐centered radicals that are intercepted by a nickel catalyst to ultimately forge C(sp3)−C(sp2) bonds. Owing to the intensified conditions in flow, the reaction time can be reduced from 12–48 hours to only 5–15 minutes. Finally, kinetic measurements highlight how the intensified conditions do not change the reaction mechanism but reliably speed up the overall process.
The late-stage introduction of allyl groups provides an opportunity to synthetic organic chemists for subsequent diversification, furnishing a rapid access to new chemical space. Here, we report the development of...
The conversion of light alkanes into bulk chemicals is becoming an important challenge as it avoids effectively the use of prefunctionalized alkylating reagents. The implementation of such processes is, however,...
The ability to construct C(sp 3 )À C(sp 3 ) bonds from easily accessible reagents is a crucial, yet challenging endeavor for synthetic organic chemists. Herein, we report the realization of such a cross-coupling reaction, which combines N-sulfonyl hydrazones and C(sp 3 )À H donors through a diarylketone-enabled photocatalytic hydrogen atom transfer and a subsequent fragmentation of the obtained alkylated hydrazide. This mild and metal-free protocol was employed to prepare a wide array of alkyl-alkyl cross-coupled products and is tolerant of a variety of functional groups. The application of this chemistry further provides a preparatively useful route to various medicinally-relevant compounds, such as homobenzylic ethers, aryl ethyl amines, β-amino acids and other moieties which are commonly encountered in approved pharmaceuticals, agrochemicals and natural products.
The late-stage introduction of allyl groups provides an opportunity to synthetic organic chemists for subsequent diversification, providing rapid access to new chemical space. Here, we report the development of a modular synthetic sequence for the allylation of strong aliphatic C(sp3)–H bonds. Our sequence features the merger of two distinct steps to accomplish this goal, including a photocatalytic Hydrogen Atom Transfer and an ensuing Horner-Wadsworth-Emmons reaction. This practical protocol enables the modular and scalable allylation of valuable building blocks and medicinally relevant molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.